IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Econometric Analysis of Financial Transaction Data: Pitfalls and Opportunities

The recent availability of large data sets covering single transactions on financial markets has created a new branch of econometrics which has opened up a new door of looking at the microstructure of financial markets and its dynamics. The specific nature of transaction data such as the randomness of arrival times of trades, the discreteness of price jumps and significant intraday seasonalities, call for specific econometric tools combining both time series techniques as well as microeconomtric techniques arising from discrete choice analysis. This paper serves as an introduction to the econometrics of transaction data. We survey the state of the art and discuss its pitfalls and opportunities. Special emphasis is given to the analysis of the properties of data from various assets and trading mechanisms. We show that some characteristics of the transaction price process such as the dynamics of intertrade durations are quite similar across various assets with different liquidity and regardless whether an asset is traded electronically or on the floor. However, the analysis of other characteristics of transaction prices process such as volatility requires a careful choice of the appropriate econometric tool. Empirical evidence is presented using examples from stocks traded electronically and on the floor at the German Stock exchange and from BUND future trading at the LIFFE and the EUREX.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cofe.uni-konstanz.de/Papers/dp01_05.pdf
File Function: Main-Text
Download Restriction: no

Paper provided by Center of Finance and Econometrics, University of Konstanz in its series CoFE Discussion Paper with number 01-05.

as
in new window

Length: 37 Pages
Date of creation: Jun 2001
Date of revision:
Handle: RePEc:knz:cofedp:0105
Contact details of provider: Postal: Fach D 147, D-78457 Konstanz
Phone: +49-7531-88-2204
Fax: +49-7531-88-4450
Web page: http://cofe.uni-konstanz.de
More information through EDIRC

Order Information: Web: http://cofe.uni-konstanz.de Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. VEREDAS, David & RODRIGUEZ-POO, Juan & ESPASA, Antoni, 2002. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," CORE Discussion Papers 2002023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Foster, F Douglas & Viswanathan, S, 1993. " Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models," Journal of Finance, American Finance Association, vol. 48(1), pages 187-211, March.
  3. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  5. Robert F. Engle, 1996. "The Econometrics of Ultra-High Frequency Data," NBER Working Papers 5816, National Bureau of Economic Research, Inc.
  6. Ball, Clifford A, 1988. " Estimation Bias Induced by Discrete Security Prices," Journal of Finance, American Finance Association, vol. 43(4), pages 841-65, September.
  7. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, Archie Craig, 1955-, 1990. "An ordered probit analysis of transaction stock prices," Working papers 3234-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  8. David Veredas & Juan Rodriguez-Poo & Antoni Espasa, 2001. "On the (Intradaily) Seasonality and Dynamics of a Financial Point Process : A Semiparametric Approach," Working Papers 2001-19, Centre de Recherche en Economie et Statistique.
  9. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
  10. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
  11. Feike C. Drost & Bas J. M. Werker, 2000. "Efficient Estimation in Semiparametric Time Series: the ACD Model," Econometric Society World Congress 2000 Contributed Papers 0836, Econometric Society.
  12. Cho, David Chinhyung & Frees, Edward W, 1988. " Estimating the Volatility of Discrete Stock Prices," Journal of Finance, American Finance Association, vol. 43(2), pages 451-66, June.
  13. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
  14. Ederington, Louis H. & Lee, Jae Ha, 1995. "The Short-Run Dynamics of the Price Adjustment to New Information," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(01), pages 117-134, March.
  15. BAUWENS, Luc & GIOT, Pierre, . "The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks," CORE Discussion Papers RP -1497, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  16. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, 02.
  17. Harris, Lawrence, 1990. "Estimation of Stock Price Variances and Serial Covariances from Discrete Observations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(03), pages 291-306, September.
  18. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
  19. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
  20. Easley, David & Kiefer, Nicholas M & O'Hara, Maureen, 1997. "One Day in the Life of a Very Common Stock," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 805-35.
  21. Eric Ghysels & Joanna Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
  22. Harris, Lawrence E, 1994. "Minimum Price Variations, Discrete Bid-Ask Spreads, and Quotation Sizes," Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 149-78.
  23. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  24. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
  25. Frank Gerhard & Nikolaus Hautsch, 2000. "Determinants of Inter-Trade Durations and Hazard Rates Using Proportional Hazard ARMA Model," CoFE Discussion Paper 00-20, Center of Finance and Econometrics, University of Konstanz.
  26. Grammig, Joachim & Wellner, Marc, 1999. "Modeling the interdependence of volatility and inter-transaction duration processes," SFB 373 Discussion Papers 1999,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  27. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
  28. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:knz:cofedp:0105. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Nolte)

The email address of this maintainer does not seem to be valid anymore. Please ask Ingmar Nolte to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.