IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Markov-switching Multifractal Approach to Forecasting Realized Volatility

  • Thomas Lux
  • Leonardo Morales-Arias
  • Cristina Sattarhoff

The volatility specification of the Markov-switching Multifractal (MSM) model is proposed as an alternative mechanism for realized volatility (RV). We estimate the RV-MSM model via Generalized Method of Moments and perform forecasting by means of best linear forecasts derived via the Levinson-Durbin algorithm. The out-of-sample performance of the RV-MSM is compared against other popular time series specfications usually employed to model the dynamics of RV as well as other standard volatility models of asset returns. An intra-day data set for five major international stock market indices is used to evaluate the various models out-of-sample. We find that the RV-MSM seems to improve upon forecasts of its baseline MSM counterparts and many other volatility models in terms of mean squared errors (MSE). While the more conventional RV-ARFIMA model comes out as the most successful model (in terms of the number of cases in which it has the best forecasts for all combinations of forecast horizons and criteria), the new RV-MSM model seems often very close in its performance and in a non-negligible number of cases even dominates over the RV-ARFIMA model

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.ifw-members.ifw-kiel.de/publications/a-markov-switching-multifractal-approach-to-forecasting-realized-volatility/kwp_1737.pdf
Download Restriction: no

Paper provided by Kiel Institute for the World Economy in its series Kiel Working Papers with number 1737.

as
in new window

Length: 48 pages
Date of creation: Oct 2011
Date of revision:
Handle: RePEc:kie:kieliw:1737
Contact details of provider: Postal: Kiellinie 66, D-24105 Kiel
Phone: +49 431 8814-1
Fax: +49 431 85853
Web page: http://www.ifw-kiel.de
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  3. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1999. "A Multifractal Model of Assets Returns," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-072, New York University, Leonard N. Stern School of Business-.
  4. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
  5. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  6. Laurent Calvet, 2000. "Forecasting Multifractal Volatility," Harvard Institute of Economic Research Working Papers 1902, Harvard - Institute of Economic Research.
  7. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
  8. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
  9. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  10. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Estimating quadratic variation using realised variance," Economics Series Working Papers 2001-W20, University of Oxford, Department of Economics.
  11. Lux, Thomas, 2006. "The Markov-Switching Multifractal Model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2006,17, Christian-Albrechts-University of Kiel, Department of Economics.
  12. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.
  13. Thomas Lux & Di Matteo & Liu Ruipeng, 2007. "True and Apparent Scaling: The Proximity of the Markov- Switching Multifractal Model to Long-Range Dependence," Working Papers wp07-12, Warwick Business School, Finance Group.
  14. Taisei Kaizoji & Thomas Lux, 2006. "Forecasting Volatility and Volume in the Tokyo Stock Market: Long Memory, Fractality and Regime Switching," Working Papers wp06-20, Warwick Business School, Finance Group.
  15. Lobato, I.N. & Savin, N.E., 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Working Papers 96-07, University of Iowa, Department of Economics.
  16. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
  17. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  18. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  19. Terence Mills, 1997. "Stylized facts on the temporal and distributional properties of daily FT-SE returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 599-604.
  20. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
  21. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  22. I.-Yuan Chuang & Jin-Ray Lu & Pei-Hsuan Lee, 2007. "Forecasting volatility in the financial markets: a comparison of alternative distributional assumptions," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1051-1060.
  23. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  24. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  25. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  26. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
  27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  28. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kie:kieliw:1737. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dieter Stribny)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.