IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Predicting GDP Components. Do Leading Indicators Increase Predictability?

  • Jonas Dovern

We use the concept of predictability as presented in Diebold and Kilian (2001) to assess how well the growth rates of various components of German GDP can be forecasted. In particular, it is analyzed how well different commonly used leading indicators can increase predictability of these time series. To this end, we propose an algorithm to select an optimal information set from a full set of possible leading indicators. In the univariate set up, we find very small degrees of predictability for all quarterly growth rates whereas yearly growth rates seem to be more predictable at short forecast horizons. According to the algorithm proposed, from a set of financial leading indicators the short term interest rate is included in the highest number of information sets and from a set of survey indicators the ifo-business expectation index is included in most cases. Conditioning on the optimal sets of leading indicators improves the predictability of most of the quarterly growth rates substantially while the predictabilities of the yearly growth rates cannot be increased significantly further. The results indicate that there is clearly evidence that complicated forecasting models are usually superior to simple AR univariate models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Kiel Institute for the World Economy in its series Kiel Advanced Studies Working Papers with number 436.

in new window

Length: 27 pages
Date of creation: Jul 2006
Date of revision:
Handle: RePEc:kie:kieasw:436
Contact details of provider: Postal: Kiellinie 66, D-24105 Kiel
Phone: +49 431 8814-1
Fax: +49 431 85853
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  2. Francis X. Diebold & Lutz Kilian, 1997. "Measuring Predictability: Theory and Macroeconomic Applications," NBER Technical Working Papers 0213, National Bureau of Economic Research, Inc.
  3. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
  4. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-42, October.
  5. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
  6. Robert B. Barsky, 1986. "The Fisher Hypothesis and the Forecastability and Persistence of Inflation," NBER Working Papers 1927, National Bureau of Economic Research, Inc.
  7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2003. "Realized Beta: Persistence and Predictability," PIER Working Paper Archive 04-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Mar 2004.
  8. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2003. "Leading Indicators for Euro-area Inflation and GDP Growth," Working Papers 235, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  9. Ulrich Fritsche & Sabine Stephan, 2002. "Leading Indicators of German Business Cycles - An Assessment of Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 222(3), pages 289-315.
  10. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
  11. Kevin Hoover & Stephen J. Perez, 2003. "Data Mining Reconsidered: Encompassing And The General-To-Specific Approach To Specification Search," Working Papers 9727, University of California, Davis, Department of Economics.
  12. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
  13. Galbraith, John W. & KI[#x1e63]Inbay, Turgut, 2005. "Content horizons for conditional variance forecasts," International Journal of Forecasting, Elsevier, vol. 21(2), pages 249-260.
  14. Gary Hansen, 2010. "Indivisible Labor and the Business Cycle," Levine's Working Paper Archive 233, David K. Levine.
  15. Kilian, Lutz, 2001. "Impulse Response Analysis in Vector Autoregressions with Unknown Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(3), pages 161-79, April.
  16. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
  17. Konstantin A. Kholodilin & Boriss Siliverstovs, 2005. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Discussion Papers of DIW Berlin 522, DIW Berlin, German Institute for Economic Research.
  18. Marc Brisson & Bryan Campbell & John Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kie:kieasw:436. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dieter Stribny)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.