IDEAS home Printed from https://ideas.repec.org/p/jen/jenjbe/2008-06.html
   My bibliography  Save this paper

Balancing assembly lines with variable parallel workplaces: Problem definition, model and exact solution procedure

Author

Listed:
  • Christian Becker

    () (Railion Deutschland AG)

  • Armin Scholl

    () (Chair of Decision Analysis and Management Science, Friedrich-Schiller-University Jena)

Abstract

Assembly line balancing problems (ALBP) arise whenever an assembly line is con- figured, redesigned or adjusted. An ALBP consists of distributing the total workload for manu- facturing any unit of the products to be assembled among the work stations along the line sub- ject to a strict or average cycle time. Traditionally, stations are considered to be manned by one operator, respectively, or duplicated in form of identical parallel stations, each also manned by a single operator. In practice, this assumption is usually too restrictive. This is particularly true for large products like cars, trucks, busses and machines, which can be handled by several op- erators performing different tasks at the same time. Only restricted research has been done on such parallel workplaces within the same station though they have significant relevance in real- world assembly line settings. In this paper, we consider an extension of the basic ALBP to the case of flexible parallel work- places (VWALBP) as they typically occur in the automobile and other industries assembling large products. The problem is defined and modelled as an integer linear program. As a solution approach a branch-and-bound procedure is proposed which also can be applied as a heuristic. Finally, computational experiments documenting the solution capabilities of the procedure are reported.

Suggested Citation

  • Christian Becker & Armin Scholl, 2008. "Balancing assembly lines with variable parallel workplaces: Problem definition, model and exact solution procedure," Jena Research Papers in Business and Economics - Working and Discussion Papers (Expired!) 06/2008, Friedrich-Schiller-University Jena, School of Economics and Business Administration.
  • Handle: RePEc:jen:jenjbe:2008-06
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.ejor.2008.11.051
    Download Restriction: no

    References listed on IDEAS

    as
    1. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    2. Scholl, Armin & Klein, Robert & Jürgens, Christian, 1996. "BISON : a fast hybrid procedure for exactly solving the one-dimensional bin packing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 49135, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. N/A, 1960. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 10(1), pages 3-3, July.
    4. N/A, 1960. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 7(1), pages 3-3, January.
    5. Roger V. Johnson, 1988. "Optimally Balancing Large Assembly Lines with "Fable"," Management Science, INFORMS, vol. 34(2), pages 240-253, February.
    6. Lapierre, Sophie D. & Ruiz, Angel & Soriano, Patrick, 2006. "Balancing assembly lines with tabu search," European Journal of Operational Research, Elsevier, vol. 168(3), pages 826-837, February.
    7. Peeters, Marc & Degraeve, Zeger, 2006. "An linear programming based lower bound for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 716-731, February.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    9. N/A, 1960. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 8(1), pages 3-3, March.
    10. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    11. Berger, Ilana & Bourjolly, Jean-Marie & Laporte, Gilbert, 1992. "Branch-and-bound algorithms for the multi-product assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 58(2), pages 215-222, April.
    12. Roger V. Johnson, 1983. "A Branch and Bound Algorithm for Assembly Line Balancing Problems with Formulation Irregularities," Management Science, INFORMS, vol. 29(11), pages 1309-1324, November.
    13. N/A, 1960. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 9(1), pages 3-3, May.
    14. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    15. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    16. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Scholl, Armin & Klein, Robert, 1997. "SALOME. a bidirectional branch and bound procedure for assembly line balancing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7890, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Fleszar, Krzysztof & Hindi, Khalil S., 2003. "An enumerative heuristic and reduction methods for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 606-620, March.
    19. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    20. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    21. G. M. Buxey, 1974. "Assembly Line Balancing with Multiple Stations," Management Science, INFORMS, vol. 20(6), pages 1010-1021, February.
    22. Klein, Robert, 2000. "Scheduling of resource constrained projects," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 1592, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Assembly line balancing; Mass-production; Combinatorial optimization; Sequencing;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jen:jenjbe:2008-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.wiwi.uni-jena.de/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.