IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Simple Representation of the Bera-Jarque-Lee Test for Probit Models

  • Joachim Wilde

The inference in probit models relies on the assumption of normality. However, tests of this assumption are not implemented in standard econometric software. Therefore, the paper presents a simple representation of the Bera-Jarque-Lee test, that does not require any matrix algebra. Furthermore, the representation is used to compare the Bera-Jarque- Lee test with the RESET-type test proposed by Papke and Wooldridge (1996).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Halle Institute for Economic Research in its series IWH Discussion Papers with number 13.

in new window

Date of creation: Dec 2007
Date of revision:
Handle: RePEc:iwh:dispap:13-07
Contact details of provider: Postal: Kleine Märkerstrasse 8, 06108 Halle (Saale)
Phone: (0345) 7753-60
Fax: (0345) 7753-820
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-32, Nov.-Dec..
  2. Russell Davidson & James G. MacKinnon, 1982. "Convenient Specification Tests for Logit and Probit Models," Working Papers 514, Queen's University, Department of Economics.
  3. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826 Elsevier.
  4. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, July.
  5. Bera, Anil K & Jarque, Carlos M & Lee, Lung-Fei, 1984. "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 563-78, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:iwh:dispap:13-07. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tobias Henning)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.