IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimating input allocation from heterogeneous data sources: a comparison of alternative estimation approaches

  • Kamel Louhichi

    ()

    (Economie Publique, INRA)

  • Florence Jacquet

    ()

    (Alimentation et Sciences Sociales, INRA)

  • Jean-Pierre Butault

    ()

    (Laboratoire d'Economie Forestière, INRA)

Cet article propose l'utilisation de la méthode de l'Entropie Maximale Généralisée (GME) pour estimer la répartition des inputs (et des coûts de production) entre différents produits en utilisant des sources de données hétérogènes (données comptables agricoles et données de l'enquête pratiques culturales). L'objectif est d'explorer le rôle d’information préalable fiable (bien-définie) dans l'amélioration de la précision de l'estimation du GME. La performance de la méthode GME est comparée par la suite à une approche bayésienne — Haute Densité Postérieure (HPD)— afin d'évaluer leur performance lorsque d’information préalable fiable est utilisée et d’examiner leur utilité pour concilier des sources de données hétérogènes. Les deux approches sont appliquées à un réseau de données comptables agricoles qui contient des informations sur la répartition des inputs entre différents produits. Les résultats d'estimation montrent que l'utilisation d’information préalable fiable provenant de source externe à l’échantillon améliore les estimations GME même si cette performance n'est pas toujours significative. Il apparaît également que l’approche bayésienne (HPD) pourrait être une bonne alternative à l'estimateur GME. HPD fournit des résultats qui sont proches de la méthode GME avec l'avantage d'une mise en œuvre simple et transparente de l’information préalable.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.eng.auth.gr/mattas/13_2_6.pdf
Download Restriction: no

Paper provided by Institut National de la Recherche Agronomique, France in its series Working Papers with number 169237.

as
in new window

Length: 83-102
Date of creation: 2012
Date of revision:
Publication status: Published in Agricultural Economics Review
Handle: RePEc:inr:wpaper:169237
Contact details of provider: Postal: 4, Allée Adolphe Bobierre, CS 61103, 35011 Rennes Cedex
Web page: http://www.international.inra.fr
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Yves Léony & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The Use of Maximum Entropy to Estimate Input-Output Coefficients From Regional Farm Accounting Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(3), pages 425-439.
  2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  3. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
  4. Zhang, Xiaobo & Fan, Shenggen, 1999. "Estimating crop-specific production technologies in Chinese agriculture: a generalized maximum entropy approach," EPTD discussion papers 50, International Food Policy Research Institute (IFPRI).
  5. repec:cup:cbooks:9780521623940 is not listed on IDEAS
  6. Lence, Sergio H & Miller, Douglas J, 1998. "Estimation of Multi-output Production Functions with Incomplete Data: A Generalised Maximum Entropy Approach," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 25(2), pages 188-209.
  7. Miller, Douglas & Plantinga, Andrew J., 1999. "Modeling Land Use Decisions with Aggregate Data," Staff General Research Papers 1487, Iowa State University, Department of Economics.
  8. Ludo Peeters & Yves Surry, 2000. "Incorporating Price-Induced Innovation in a Symmetric Generalised McFadden Cost Function with Several Outputs," Journal of Productivity Analysis, Springer, vol. 14(1), pages 53-70, July.
  9. Douglas J. Miller & Andrew J. Plantinga, 1999. "Modeling Land Use Decisions with Aggregate Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 180-194.
  10. Paris, Quirino & Caputo, Michael R., 2001. "Sensitivity Of The Gme Estimates To Support Bounds," Working Papers 11966, University of California, Davis, Department of Agricultural and Resource Economics.
  11. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 30(1), pages 27-50, March.
  12. A. Moxey & R. Tiffin, 1994. "Estimating Linear Production Coefficients From Farm Business Survey Data: A Note," Journal of Agricultural Economics, Wiley Blackwell, vol. 45(3), pages 381-385.
  13. Robilliard, Anne-Sophie & Robinson, Sherman, 1999. "Reconciling household surveys and national accounts data using a cross entropy estimation method:," TMD discussion papers 50, International Food Policy Research Institute (IFPRI).
  14. P. Midmore, 1990. "Estimating Input-Output Coefficients From Regional Farm Data-A Comment," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(1), pages 108-111.
  15. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:inr:wpaper:169237. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Administrateur de ProdInra)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.