IDEAS home Printed from https://ideas.repec.org/p/ind/isipdp/09-08.html
   My bibliography  Save this paper

A Characterization of the average tree solution for tree games

Author

Listed:
  • Debasis Mishra

    () (Indian Statistical Institute, New Delhi)

  • Dolf Talman

    (Tilburg University)

Abstract

For the class of tree games, a new solution called the average tree solution has been proposed recently. We provide a characterization of this solution. This characterization underlines an important difference, in terms of symmetric treatment of the agents, between the average tree solution and the Myerson value for the class of tree games.

Suggested Citation

  • Debasis Mishra & Dolf Talman, 2009. "A Characterization of the average tree solution for tree games," Indian Statistical Institute, Planning Unit, New Delhi Discussion Papers 09-08, Indian Statistical Institute, New Delhi, India.
  • Handle: RePEc:ind:isipdp:09-08
    as

    Download full text from publisher

    File URL: http://www.isid.ac.in/~pu/dispapers/dp09-08.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    2. Le Breton, M & Owen, G & Weber, S, 1992. "Strongly Balanced Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 419-427.
    3. Demange, Gabrielle, 1994. "Intermediate preferences and stable coalition structures," Journal of Mathematical Economics, Elsevier, vol. 23(1), pages 45-58, January.
    4. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    5. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    6. Kaneko, Mamoru & Wooders, Myrna Holtz, 1982. "Cores of partitioning games," Mathematical Social Sciences, Elsevier, vol. 3(4), pages 313-327, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    2. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    4. Selçuk, Özer & Suzuki, Takamasa & Talman, Dolf, 2013. "Equivalence and axiomatization of solutions for cooperative games with circular communication structure," Economics Letters, Elsevier, vol. 121(3), pages 428-431.
    5. Khmelnitskaya, A. & van der Laan, G. & Talman, Dolf, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Discussion Paper 2016-035, Tilburg University, Center for Economic Research.
    6. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    7. Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)," Discussion Paper 2011-119, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    tree; graph games; Myerson value; Shapley value;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ind:isipdp:09-08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamprasad M. Pujar). General contact details of provider: http://edirc.repec.org/data/isindin.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.