IDEAS home Printed from
   My bibliography  Save this paper

Volatility and Jump Risk Premia in Emerging Market Bonds


  • John J Matovu


There is strong evidence that interest rates and bond yield movements exhibit both stochastic volatility and unanticipated jumps. The presence of frequent jumps makes it natural to ask whether there is a premium for jump risk embedded in observed bond yields. This paper identifies a class of jump-diffusion models that are successful in approximating the term structure of interest rates of emerging markets. The parameters of the term structure of interest rates are reconciled with the associated bond yields by estimating the volatility and jump risk premia in highly volatile markets. Using the simulated method of moments (SMM), results suggest that all variants of models which do not take into account stochastic volatility and unanticipated jumps cannot generate the non-normalities consistent with the observed interest rates. Jumps occur (8,10) times a year in Argentina and Brazil, respectively. The size and variance of these jumps is also of statistical significance.

Suggested Citation

  • John J Matovu, 2007. "Volatility and Jump Risk Premia in Emerging Market Bonds," IMF Working Papers 07/172, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:07/172

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    3. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    4. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    5. Bansal, Ravi & Gallant, A. Ronald & Hussey, Robert & Tauchen, George, 1995. "Nonparametric estimation of structural models for high-frequency currency market data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 251-287.
    6. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    7. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    9. Brennan, Michael J. & Schwartz, Eduardo S., 1980. "Analyzing Convertible Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(04), pages 907-929, November.
    10. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    11. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    12. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    13. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    14. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    15. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    16. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
    17. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Bonds; Economic models; Emerging markets; Risk premium; Interest rates; Volatility; Jumps; Risk Premia; bond; bond yields; polynomial; statistics; Jumps And Risk Premia;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:07/172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jim Beardow) or (Hassan Zaidi). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.