IDEAS home Printed from
   My bibliography  Save this paper

TENET: Tail-Event driven NETwork risk


  • Wolfgang Karl Härdle
  • Natalia Sirotko-Sibirskaya
  • Weining Wang


We propose a semiparametric measure to estimate systemic interconnectedness across financial institutions based on tail-driven spill-over effects in a ultra-high dimensional framework. Methodologically, we employ a variable selection technique in a time series setting in the context of a single-index model for a generalized quantile regression framework. We can thus include more financial institutions into the analysis, to measure their interdependencies in tails and, at the same time, to take into account non-linear relationships between them. A empirical application on a set of 200 publicly traded U. S. nancial institutions provides useful rankings of systemic exposure and systemic contribution at various stages of financial crisis. Network analysis, its behaviour and dynamics, allows us to characterize a role of each sector in the financial crisis and yields a new perspective of the nancial markets at the U. S. financial market 2007 - 2012.

Suggested Citation

  • Wolfgang Karl Härdle & Natalia Sirotko-Sibirskaya & Weining Wang, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers SFB649DP2014-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-066

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Michael Boss & Gerald Krenn & Claus Puhr & Martin Summer, 2006. "Systemic Risk Monitor: A Model for Systemic Risk Analysis and Stress Testing of Banking Systems," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 11, pages 83-95.
    5. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    6. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    7. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    8. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    9. Gertler, Mark & Kiyotaki, Nobuhiro, 2010. "Financial Intermediation and Credit Policy in Business Cycle Analysis," Handbook of Monetary Economics,in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 11, pages 547-599 Elsevier.
    10. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    11. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1529-1564, October.
    12. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    13. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    14. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    15. Lehar, Alfred, 2005. "Measuring systemic risk: A risk management approach," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2577-2603, October.
    16. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    17. Jürgen Franke & Peter Mwita & Weining Wang, 2014. "Nonparametric Estimates for Conditional Quantiles of Time Series," SFB 649 Discussion Papers SFB649DP2014-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    18. Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
    19. Rodríguez-Moreno, María & Peña, Juan Ignacio, 2013. "Systemic risk measures: The simpler the better?," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 1817-1831.
    20. Carroll, R. J. & Härdle, W., 1989. "Symmetrized nearest neighbor regression estimates," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 315-318, February.
    21. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    22. Shih-Kang Chao & Wolfgang Karl Härdle & Weining Wang, 2012. "Quantile Regression in Risk Calibration," SFB 649 Discussion Papers SFB649DP2012-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
    2. Lining Yu & Wolfgang Karl Härdle & Lukas Borke & Thijs Benschop, 2017. "FRM: a Financial Risk Meter based on penalizing tail events occurrence," SFB 649 Discussion Papers SFB649DP2017-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. repec:eee:ememar:v:35:y:2018:i:c:p:1-18 is not listed on IDEAS
    4. repec:eee:ememar:v:35:y:2018:i:c:p:190-206 is not listed on IDEAS
    5. Ya Qian & Wolfgang Karl Härdle & Cathy Yi-Hsuan Chen, 2017. "Industry Interdependency Dynamics in a Network Context," SFB 649 Discussion Papers SFB649DP2017-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle & Yarema Okhrin, 2017. "Tail event driven networks of SIFIs," SFB 649 Discussion Papers SFB649DP2017-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Xinjue Li & Lenka Zbonakova & Wolfgang Karl Härdle, 2017. "Penalized Adaptive Method in Forecasting with Large Information Set and Structure Change," SFB 649 Discussion Papers SFB649DP2017-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Bernardi, M. & Durante, F. & Jaworski, P., 2017. "CoVaR of families of copulas," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 8-17.
    9. Li Guo & Yubo Tao & Jun Tu, 2017. "Media Network and Return Predictability," Papers 1703.02715,, revised Dec 2017.
    10. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    11. Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.

    More about this item


    Systemic Risk; Systemic Risk Network; Generalized Quantile; Quantile Single-Index Regression; Value at Risk; CoVaR; Lasso;

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-066. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.