IDEAS home Printed from
   My bibliography  Save this paper

Estimation procedures for exchangeable Marshall copulas with hydrological application


  • Fabrizio Durante
  • Ostap Okhrin


Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both positive and (upper) tail association between random variables. Speci cally, inference procedures for the family of exchangeable Marshall copulas are introduced, based on the estimation of their (univariate) generator. Moreover, the performance of the proposed methodologies is shown in a simulation study. Finally, an illustration describes how the proposed procedures can be useful in a hydrological application.

Suggested Citation

  • Fabrizio Durante & Ostap Okhrin, 2014. "Estimation procedures for exchangeable Marshall copulas with hydrological application," SFB 649 Discussion Papers SFB649DP2014-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-014

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter Open, vol. 1, pages 1-36, October.
    2. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    3. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    4. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
    5. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    6. Jean-François Quessy, 2012. "Testing for Bivariate Extreme Dependence Using Kendall's Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(3), pages 497-514, September.
    7. Manner, Hans & Segers, Johan, 2011. "Tails of correlation mixtures of elliptical copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 153-160, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cuadras, Carles M., 2015. "Contributions to the diagonal expansion of a bivariate copula with continuous extensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 28-44.
    2. Alghalith, Moawia, 2016. "Novel and simple non-parametric methods of estimating the joint and marginal densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 94-98.
    3. Alghalith, Moawia, 2017. "A new parametric method of estimating the joint probability density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 799-803.

    More about this item


    Copula; Kendall distribution; Marshall-Olkin distribution; Non-parametric Estimation; Risk Management;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.