IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2012-045.html
   My bibliography  Save this paper

Additive Models: Extensions and Related Models

Author

Listed:
  • Enno Mammen
  • Byeong U. Park
  • Melanie Schienle

Abstract

We give an overview over smooth back tting type estimators in additive models. Moreover we il- lustrate their wide applicability in models closely related to additive models such as nonparametric regression with dependent error variables where the errors can be transformed to white noise by a linear transformation, nonparametric regression with repeatedly measured data, nonparametric panels with xed e ects, simultaneous nonparametric equation models, and non- and semiparamet- ric autoregression and GARCH-models. We also discuss extensions to varying coecient models, additive models with missing observations, and the case of nonstationary covariates.

Suggested Citation

  • Enno Mammen & Byeong U. Park & Melanie Schienle, 2012. "Additive Models: Extensions and Related Models," SFB 649 Discussion Papers SFB649DP2012-045, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2012-045
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-045.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(03), pages 497-521, June.
    2. Linton, Oliver B. & Mammen, Enno, 2008. "Nonparametric transformation to white noise," Journal of Econometrics, Elsevier, vol. 142(1), pages 241-264, January.
    3. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    5. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    6. Raymond J. Carroll & Arnab Maity & Enno Mammen & Kyusang Yu, 2009. "Nonparametric additive regression for repeatedly measured data," Biometrika, Biometrika Trust, vol. 96(2), pages 383-398.
    7. Mammen, Enno & Støve, Bård & Tjøstheim, Dag, 2009. "Nonparametric Additive Models For Panels Of Time Series," Econometric Theory, Cambridge University Press, vol. 25(02), pages 442-481, April.
    8. Göran Kauermann, 2003. "Local Likelihood Estimation in Generalized Additive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 317-337.
    9. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    10. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    11. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    14. Berthold R. Haag, 2008. "Non-parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738.
    15. Enno Mammen, 2003. "Generalised structured models," Biometrika, Biometrika Trust, vol. 90(3), pages 551-566, September.
    16. Enno Mammen & Christoph Rothe & Melanie Schienle, 2010. "Nonparametric Regression with Nonparametrically Generated Covariates," SFB 649 Discussion Papers SFB649DP2010-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    18. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    19. Stefan Hoderlein & Enno Mammen & Kyusang Yu, 2011. "Non‐parametric models in binary choice fixed effects panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 351-367, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz Ozabaci & Daniel Henderson, 2015. "Additive kernel estimates of returns to schooling," Empirical Economics, Springer, vol. 48(1), pages 227-251, February.

    More about this item

    Keywords

    smooth backfitting; additive models;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2012-045. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.