IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2011-081.html
   My bibliography  Save this paper

Parametric estimation. Finite sample theory

Author

Listed:
  • Vladimir Spokoiny

Abstract

The paper aims at reconsidering the famous Le Cam LAN theory. The main features of the approach which make it different from the classical one are: (1) the study is non-asymptotic, that is, the sample size is xed and does not tend to infinity; (2) the parametric assumption is possibly misspecified and the underlying data distribution can lie beyond the given parametric family. The main results include a large deviation bounds for the (quasi) maximum likelihood and the local quadratic majorization of the log-likelihood process. The latter yields a number of important corollaries for statistical inference - concentration, confidence and risk bounds, expansion of the maximum likelihood estimate, etc. All these corollaries are stated in a non-classical way admitting a model misspecification and finite samples. However, the classical asymptotic results including the efficiency bounds can be easily derived as corollaries of the obtained non-asymptotic statements. The general results are illustrated for the i.i.d. set-up as well as for generalized linear and median estimation. The results apply for any dimension of the parameter space and provide a quantitative lower bound on the sample size yielding the root-n accuracy. We also discuss the procedures which allows to recover the structure when its e ective dimension is unknown.

Suggested Citation

  • Vladimir Spokoiny, 2011. "Parametric estimation. Finite sample theory," SFB 649 Discussion Papers SFB649DP2011-081, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2011-081
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2011-081.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    maximum likelihood; local quadratic approximation; concentration; coverage; deficiency;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2011-081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.