IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2009-002.html
   My bibliography  Save this paper

On the Systemic Nature of Weather Risk

Author

Listed:
  • Guenther Filler
  • Martin Odening
  • Ostap Okhrin
  • Wei Xu

Abstract

Systemic weather risk is a major obstacle for the formation of private (non- subsidized) crop insurance. This paper explores the possibility of spatial diversification of insurance by estimating the joint occurrence of unfavorable weather conditions in different locations. For that purpose copula methods are employed that allow an adequate description of stochastic dependencies between multivariate random variables. The estimation procedure is applied to weather data in Germany. Our results indicate that indemnity payments based on temperature as well as on cumulative rainfall show strong stochastic dependence even at a national scale. Thus the possibility to reduce risk exposure by increasing the trading area of the insurance is limited. Irrespective of their economic implications our results pinpoint the necessity of a proper statistical modeling of the dependence structure of multivariate random variables. The usual approach of measuring stochastic dependence with linear correlation coefficients turned out to be questionable in the context of weather insurance as it may overestimate diversification effects considerably.

Suggested Citation

  • Guenther Filler & Martin Odening & Ostap Okhrin & Wei Xu, 2009. "On the Systemic Nature of Weather Risk," SFB 649 Discussion Papers SFB649DP2009-002, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2009-002
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2009-002.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vedenov, Dmitry V., 2008. "Application of Copulas to Estimation of Joint Crop Yield Distributions," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6264, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    3. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 0(Number 1), pages 1-14, July.
    4. H. Holly Wang & Hao Zhang, 2003. "On the Possibility of a Private Crop Insurance Market: A Spatial Statistics Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(1), pages 111-124.
    5. Xu, Wei & Odening, Martin & Musshoff, Oliver, 2008. "Optimal Design of Weather Bonds," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6781, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Wolfgang Härdle & Ostap Okhrin & Yarema Okhrin, 2008. "Modeling Dependencies in Finance using Copulae," SFB 649 Discussion Papers SFB649DP2008-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    8. Barry K. Goodwin, 2001. "Problems with Market Insurance in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 643-649.
    9. Enzo Giacomini & Wolfgang Härdle, 2005. "Value-at-Risk Calculations with Time Varying Copulae," SFB 649 Discussion Papers SFB649DP2005-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Martin Odening & Oliver Musshoff & Wei Xu, 2007. "Analysis of rainfall derivatives using daily precipitation models: opportunities and pitfalls," Agricultural Finance Review, Emerald Group Publishing, vol. 67(1), pages 135-156, May.
    11. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
    12. World Bank, 2005. "Managing Agricultural Production Risk : Innovations in Developing Countries," World Bank Other Operational Studies 14434, The World Bank.
    13. Mario J. Miranda & Joseph W. Glauber, 1997. "Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    2. Roland Strausz, 2009. "The Political Economy of Regulatory Risk," SFB 649 Discussion Papers SFB649DP2009-040, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Raushan Bokusheva, 2011. "Measuring dependence in joint distributions of yield and weather variables," Agricultural Finance Review, Emerald Group Publishing, vol. 71(1), pages 120-141, May.
    4. M. Ritter & O. Mußhoff & M. Odening, 2014. "Minimizing Geographical Basis Risk of Weather Derivatives Using A Multi-Site Rainfall Model," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 67-86, June.
    5. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    6. Schulte-Geers, Matthias & Berg, Ernst, 2011. "Modelling farm production risk with copulae instead of correlations," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115996, European Association of Agricultural Economists.
    7. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    8. Michał Grajek & Lars-Hendrik Röller, 2012. "Regulation and Investment in Network Industries: Evidence from European Telecoms," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 189-216.
    9. Barbara Choroś & Wolfgang Härdle & Ostap Okhrin, 2009. "CDO and HAC," SFB 649 Discussion Papers SFB649DP2009-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Maria Grith & Wolfgang Härdle & Juhyun Park, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers SFB649DP2009-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Ostap Okhrin, 2010. "Fitting high-dimensional Copulae to Data," SFB 649 Discussion Papers SFB649DP2010-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Chung, Wonho, 2013. "Reducing the Social Cost of Federal Crop Insurance: A Role for US Government Hedging with Weather Derivatives," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 0(Issue 2), pages 1-26, August.
    13. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    14. Bokusheva, Raushan, 2010. "Measuring the dependence structure between yield and weather variables," MPRA Paper 22786, University Library of Munich, Germany.
    15. Feng, Xiaoguang & Hayes, Dermot, 2014. "Is Government Involvement Really Necessary: Implications for Systemic Risk and Crop Reinsurance Contracts," 2014 AAEA: Crop Insurance and the 2014 Farm Bill Symposium: Implementing Change in U.S. Agricultural Policy, October 8-9, 2014, Louisville, KY 184241, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    weather risk; crop insurance; copula;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • Q19 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2009-002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.