IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2007-010.html
   My bibliography  Save this paper

On s-additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model

Author

Listed:
  • Volker Krätschmer

Abstract

Recently, Frittelli and Scandolo ([9]) extend the notion of risk measures, originally introduced by Artzner, Delbaen, Eber and Heath ([1]), to the risk assessment of abstract financial positions, including pay offs spread over different dates, where liquid derivatives are admitted to serve as financial instruments. The paper deals with s-additive robust representations of convex risk measures in the extended sense, dropping the assumption of an existing market model, and allowing also unbounded financial positions. The results may be applied for the case that a market model is available, and they encompass as well as improve criteria obtained for robust representations of the original convex risk measures for bounded positions ([4], [7], [16]).

Suggested Citation

  • Volker Krätschmer, 2007. "On s-additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model," SFB 649 Discussion Papers SFB649DP2007-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2007-010
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2007-010.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612.
    2. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, EconWPA, revised 08 Oct 2005.
    3. Volker Krätschmer, 2006. "Compactness in Spaces of Inner Regular Measures and a General Portmanteau Lemma," SFB 649 Discussion Papers SFB649DP2006-081, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    5. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    6. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    7. repec:dau:papers:123456789/342 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Convex risk measures; model uncertainty; s-additive robust representation; Fatou property; nonsequential Fatou property; strong s-additive robust representation; Krein-Smulian theorem; Greco theorem; inner Daniell stone theorem; general Dini theorem; Simons’ lemma.;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2007-010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.