IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimation of multivariate critical layers: Applications to rainfall data

  • Elena Di Bernardino


    (CEDRIC - Centre d'Etude et De Recherche en Informatique du Cnam - Conservatoire National des Arts et Métiers (CNAM))

  • Didier Rullière


    (SAF - Laboratoire de Sciences Actuarielle et Financière - Université Claude Bernard - Lyon I (UCBL) : EA2429)

Calculating return periods and critical layers (i.e., multivariate quantile curves) in a multivariate environment is a di cult problem. A possible consistent theoretical framework for the calculation of the return period, in a multi-dimensional environment, is essentially based on the notion of copula and level sets of the multivariate probability distribution. In this paper we propose a fast and parametric methodology to estimate the multivariate critical layers of a distribution and its associated return periods. The model is based on transformations of the marginal distributions and transformations of the dependence structure within the class of Archimedean copulas. The model has a tunable number of parameters, and we show that it is possible to get a competitive estimation without any global optimum research. We also get parametric expressions for the critical layers and return periods. The methodology is illustrated on hydrological 5-dimensional real data. On this real data-set we obtain a good quality of estimation and we compare the obtained results with some classical parametric competitors

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by HAL in its series Working Papers with number hal-00940089.

in new window

Date of creation: 02 Jun 2014
Date of revision:
Handle: RePEc:hal:wpaper:hal-00940089
Note: View the original document on HAL open archive server:
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
  2. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
  3. Belzunce, F. & Castano, A. & Olvera-Cervantes, A. & Suarez-Llorens, A., 2007. "Quantile curves and dependence structure for bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5112-5129, June.
  4. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
  5. Elena Di Bernardino & Didier Rullière, 2013. "Distortions of multivariate distribution functions and associated level curves: applications in multivariate risk theory," Post-Print hal-00750873, HAL.
  6. Ivan Kojadinovic & Jun Yan, . "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, American Statistical Association, vol. 34(i09).
  7. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
  8. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
  9. Elena Di Bernardino & Didier Rullière, 2013. "On certain transformation of Archimedean copulas: Application to the non-parametric estimation of their generators," Post-Print hal-00834000, HAL.
  10. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 20(2), pages 263-270, August.
  11. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
  12. Alexis Bienven�e & Didier Rulli�re, 2012. "Iterative Adjustment of Survival Functions by Composed Probability Distortions," The Geneva Risk and Insurance Review, Palgrave Macmillan, vol. 37(2), pages 156-179, September.
  13. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
  14. Wysocki, Włodzimierz, 2012. "Constructing archimedean copulas from diagonal sections," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 818-826.
  15. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00940089. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.