IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimation of fractional integration under temporal aggregation

  • Uwe Hassler

    ()

A result characterizing the effect of temporal aggregation in the frequency domain is known for arbitrary stationary processes and generalized for difference-stationary processes here. Temporal aggregation includes cumulation of flow variables as well as systematic (or skip) sampling of stock variables. Next, the aggregation result is applied to fractionally integrated processes. In particular, it is investigated whether typical frequency domain assumptions made for semiparametric estimation and inference are closed with respect to aggregation. With these findings it is spelled out, which estimators remain valid upon aggregation under which conditions on bandwidth selection.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://peer.ccsd.cnrs.fr/docs/00/81/55/63/PDF/PEER_stage2_10.1016%252Fj.jeconom.2011.01.003.pdf
Download Restriction: no

Paper provided by HAL in its series Post-Print with number peer-00815563.

as
in new window

Length:
Date of creation: 19 Apr 2011
Date of revision:
Publication status: Published, Journal of Econometrics, 2011
Handle: RePEc:hal:journl:peer-00815563
Note: View the original document on HAL open archive server: http://peer.ccsd.cnrs.fr/peer-00815563
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum & David Marshall, 1987. "The Permanent Income Hypothesis Revisited," NBER Working Papers 2209, National Bureau of Economic Research, Inc.
  2. Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  3. Marcus J. Chambers, 2001. "Testing for Unit Roots with Flow Data and Varying Sampling Frequency," Economics Discussion Papers 529, University of Essex, Department of Economics.
  4. Drost, F.C. & Nijman, T.E., 1992. "Temporal Aggregation of Garch Processes," Papers 9240, Tilburg - Center for Economic Research.
  5. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
  6. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series /2001/424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  7. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
  8. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-35, November.
  9. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  10. Helmut Luetkepohl, 2009. "Forecasting Aggregated Time Series Variables: A Survey," Economics Working Papers ECO2009/17, European University Institute.
  11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, 02.
  12. Frederic S. Mishkin, 2007. "Inflation Dynamics," NBER Working Papers 13147, National Bureau of Economic Research, Inc.
  13. Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: a survey," ULB Institutional Repository 2013/136205, ULB -- Universite Libre de Bruxelles.
  14. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
  15. L Giraitis & J Hidalgo & Peter M. Robinson, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
  16. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
  17. Lars Peter Hansen & Thomas J. Sargent, 1981. "The dimensionality of the aliasing problem in models with rational spectral densities," Staff Report 72, Federal Reserve Bank of Minneapolis.
  18. Souza, Leonardo R. & Smith, Jeremy, 2002. "Bias in the memory parameter for different sampling rates," International Journal of Forecasting, Elsevier, vol. 18(2), pages 299-313.
  19. Hwang, Soosung, 2000. "The Effects Of Systematic Sampling And Temporal Aggregation On Discrete Time Long Memory Processes And Their Finite Sample Properties," Econometric Theory, Cambridge University Press, vol. 16(03), pages 347-372, June.
  20. Ivan Paya & Agustin Duarte & Ken Holden, 2007. "On the Relationship between Inflation Persistence and Temporal Aggregation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1521-1531, 09.
  21. Leonardo Rocha Souza, 2005. "A Note On Chambers'S "Long Memory And Aggregation In Macroeconomic Time Series"," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(3), pages 1059-1062, 08.
  22. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 219-261.
  23. Violetta Dalla & Javier Hidalgo, 2005. "A parametric bootstrap test for cycles," LSE Research Online Documents on Economics 6829, London School of Economics and Political Science, LSE Library.
  24. Katsumi Shimotsu, 2002. "Exact Local Whittle Estimation of Fractional Integration with Unknown Mean and Time Trend," Economics Discussion Papers 543, University of Essex, Department of Economics.
  25. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary And Nonstationary Discrete-Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 613-624, 07.
  26. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary and Non-stationary Continuous-Time Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 583-597.
  27. Marcus J. Chambers, . "Long Memory and Aggregation in Macroeconomic Time Series," Economics Discussion Papers 437, University of Essex, Department of Economics.
  28. Liudas Giraitis & Javier Hidalgo & Peter Robinson, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
  29. Francis X. Diebold & Glenn D. Rudebusch, 1988. "Long memory and persistence in aggregate output," Finance and Economics Discussion Series 7, Board of Governors of the Federal Reserve System (U.S.).
  30. repec:ner:tilbur:urn:nbn:nl:ui:12-153295 is not listed on IDEAS
  31. Granger, C.W.J. & Siklos, P.L., 1993. "Systematic Sampling, Temporal Aggregation, Seasonal Adjustment, and Cointegration: Theory and Evidence," Working Papers 93001, Wilfrid Laurier University, Department of Economics.
  32. Guggenberger, Patrik & Sun, Yixiao, 2004. "Bias-Reduced Log-Periodogram and Whittle Estimation of the Long-Memory Parameter Without Variance Inflation," University of California at San Diego, Economics Working Paper Series qt2z99w4sm, Department of Economics, UC San Diego.
  33. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, 09.
  34. Robert J. Shiller & Pierre Perron, 1985. "Testing the Random Walk Hypothesis: Power versus Frequency of Observation," NBER Technical Working Papers 0045, National Bureau of Economic Research, Inc.
  35. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, 03.
  36. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
  37. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, EconWPA.
  38. Javier Hidalgo, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
  39. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
  40. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  41. Leonardo Rocha Souza, 2008. "Why Aggregate Long Memory Time Series?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 298-316.
  42. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, 03.
  43. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  44. R. Tschernig, 1994. "Long Memory in Foreign Exchange Rates Revisited," SFB 373 Discussion Papers 1994,46, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  45. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
  46. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
  47. Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
  48. John J. Seater & Robert J. Rossana, . "Temporal Aggregation and Economic Time Series," Working Paper Series 19, North Carolina State University, Department of Economics.
  49. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
  50. Chambers, Marcus J., 1996. "The Estimation of Continuous Parameter Long-Memory Time Series Models," Econometric Theory, Cambridge University Press, vol. 12(02), pages 374-390, June.
  51. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  52. repec:ner:tilbur:urn:nbn:nl:ui:12-153273 is not listed on IDEAS
  53. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, School of Economics and Management.
  54. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
  55. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  56. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series /2005/481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  57. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-36, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:peer-00815563. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.