IDEAS home Printed from
   My bibliography  Save this paper

Market power in power markets: The case of French wholesale electricity market


  • Sophie Méritet

    (LEDa - Laboratoire d'Economie de Dauphine - Université Paris-Dauphine)

  • Thi Phuong Thao Pham

    (LEDa - Laboratoire d'Economie de Dauphine - Université Paris-Dauphine)


The French wholesale market is set to expand in the next few years under European pressures and national decisions. In this paper, we investigate the performance of the French wholesale power market to examine whether or not the equilibrium outcomes are competitive. After a literature review on the different existing models, an extension of the Bresnahan - Lau (1982) method in panel data framework is employed with hourly dataset during 2009-2012 on the French wholesale market. The model-based results suggest that though market power is found statistically significant in several peak-load hours, it stays at very low level. On average, no market power is exercised over the examined period. These results correspond with the extremely regulated wholesale power market in France. It is of high interest given the future evolution of the French wholesale market which will be among the biggest in Europe in 2016 after the end of regulated tariffs for all firms.

Suggested Citation

  • Sophie Méritet & Thi Phuong Thao Pham, 2014. "Market power in power markets: The case of French wholesale electricity market," Post-Print hal-01502931, HAL.
  • Handle: RePEc:hal:journl:hal-01502931
    Note: View the original document on HAL open archive server:

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    4. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    5. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    8. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    9. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    10. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    11. Kapetanios, George & Labhard, Vincent & Price, Simon, 2006. "Forecasting using predictive likelihood model averaging," Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
    12. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    13. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    14. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
    15. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    16. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    17. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    20. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Thao Pham, 2015. "Energiewende and competition in Germany: Diagnosing market power in wholesale electricity market," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 29-49.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01502931. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.