IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital

  • Oskar Lecuyer

    ()

    (CIRED - Centre International de Recherche sur l'Environnement et le Développement - Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR56 - CNRS : UMR8568 - École des Hautes Études en Sciences Sociales [EHESS] - École des Ponts ParisTech (ENPC) - AgroParisTech)

  • Adrien Vogt-Schilb

    ()

    (CIRED - Centre International de Recherche sur l'Environnement et le Développement - Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR56 - CNRS : UMR8568 - École des Hautes Études en Sciences Sociales [EHESS] - École des Ponts ParisTech (ENPC) - AgroParisTech)

Climate change mitigation requires to replace preexisting carbon-intensive capital with different types of cleaner capital. Coal power and inefficient thermal engines may be phased out by gas power and efficient thermal engines or by renewable power and electric vehicles. We derive the optimal timing and costs of investment in a low- and a zero-carbon technology, under an exogenous ceiling constraint on atmospheric pollution. Producing output from the low-carbon technology requires to extract an exhaustible resource. A general finding is that investment in the expensive zero-carbon technology should always be higher than, and can optimally start before, investment in the cheaper low-carbon technology. We then provide illustrative simulations calibrated with data from the European electricity sector. The optimal investment schedule involves building some gas capacity that will be left unused before it naturally depreciates, a process known as \textit{mothballing} or \textit{early scrapping}. Finally, the levelized cost of electricity (LCOE) is a misleading metric to assess investment in new capacities. Optimal LCOEs vary dramatically across technologies. Ranking technologies according to their LCOE would bring too little investment in renewable power, and too much in the intermediate gas power.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hal-enpc.archives-ouvertes.fr/docs/00/85/06/80/PDF/mcelec.pdf
Download Restriction: no

Paper provided by HAL in its series Post-Print with number hal-00850680.

as
in new window

Length:
Date of creation: 2013
Date of revision:
Publication status: Published, Energy Policy, 2013, 10.1016/j.enpol.2013.11.045
Handle: RePEc:hal:journl:hal-00850680
Note: View the original document on HAL open archive server: http://hal-enpc.archives-ouvertes.fr/hal-00850680
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wang, Min & Zhao, Jinhua, 2013. "Monopoly extraction of a nonrenewable resource facing capacity constrained renewable competition," Economics Letters, Elsevier, vol. 120(3), pages 503-508.
  2. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
  3. Amigues, Jean-Pierre & Ayong Le Kama, Alain & Chakravorty, Ujjayant & Moreaux, Michel, 2013. "Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity Constraints," IDEI Working Papers 802, Institut d'Économie Industrielle (IDEI), Toulouse.
  4. Guy MEUNIER, 2013. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Working Papers 221662, Institut National de la Recherche Agronomique, France.
  5. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
  6. Adrien Vogt-Schilb & Stéphane Hallegatte, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Post-Print hal-00916328, HAL.
  7. Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011. "When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves," Policy Research Working Paper Series 5803, The World Bank.
  8. Acemoglu, Daron & Aghion, Philippe & Bursztyn, Leonardo & Hemous, David, 2011. "The Environment and Directed Technical Change," CEPR Discussion Papers 8660, C.E.P.R. Discussion Papers.
  9. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
  10. Gerlagh, R. & Kverndokk, S. & Rosendahl, K.E., 2009. "Optimal timing of climate change policy : Interaction between carbon taxes and innovation externalities," Other publications TiSEM 4312dde8-f323-4ee2-9764-a, School of Economics and Management.
  11. repec:hal:wpaper:hal-00850682 is not listed on IDEAS
  12. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-41, May.
  13. Aurelie Slechten, 2011. "Intertemporal Links in Cap-and Trade Schemes," Working Papers ECARES ECARES 2011-014, ULB -- Universite Libre de Bruxelles.
  14. Holland, Stephen P., 2003. "Extraction capacity and the optimal order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 569-588, May.
  15. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
  16. Amigues, J-P & Favard, P & Gaudet, G & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Universite de Montreal, Departement de sciences economiques.
  17. Chakravorty, Ujjayant & Moreaux, Michel & Tidball, Mabel, 2006. "Ordering the Extraction of Polluting Nonrenewable Resources," IDEI Working Papers 415, Institut d'Économie Industrielle (IDEI), Toulouse.
  18. Frederick Ploeg & Cees Withagen, 1991. "Pollution control and the Ramsey problem," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 1(2), pages 215-236, June.
  19. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
  20. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
  21. Fischer, Carolyn & Toman, Michael & Withagen, Cees, 2002. "Optimal Investment in Clean Production Capacity," Discussion Papers dp-02-38, Resources For the Future.
  22. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2013. "How capital-based instruments facilitate the transition toward a low-carbon economy : a tradeoff between optimality and acceptability," Policy Research Working Paper Series 6609, The World Bank.
  23. Renaud Coulomb & Fanny Henriet, 2014. "The Grey Paradox: How Oil Owners Can Benefit From Carbon Regulation," PSE Working Papers hal-00818350, HAL.
  24. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
  25. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
  26. Harry F. Campbell, 1980. "The Effect of Capital Intensity on the Optimal Rate of Extraction of a Mineral Deposit," Canadian Journal of Economics, Canadian Economics Association, vol. 13(2), pages 349-56, May.
  27. Mussa, Michael L, 1977. "External and Internal Adjustment Costs and the Theory of Aggregate and Firm Investment," Economica, London School of Economics and Political Science, vol. 44(174), pages 163-78, May.
  28. repec:ner:tilbur:urn:nbn:nl:ui:12-3107039 is not listed on IDEAS
  29. Adrien Vogt-Shilb & Guy MEUNIER & Stéphane Hallegate, 2013. "Should marginal abatement costs differ across sectors? The effect of low-carbon capital accumulation," Working Papers 221666, Institut National de la Recherche Agronomique, France.
  30. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
  31. Kemp, Murray C & Long, Ngo Van, 1980. "On Two Folk Theorems Concerning the Extraction of Exhaustible Resources," Econometrica, Econometric Society, vol. 48(3), pages 663-73, April.
  32. Dieter Helm & Cameron Hepburn & Richard Mash, 2003. "Credible Carbon Policy," Oxford Review of Economic Policy, Oxford University Press, vol. 19(3), pages 438-450.
  33. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
  34. Waisman, Henri & Rozenberg, Julie & Sassi, Olivier & Hourcade, Jean-Charles, 2012. "Peak Oil profiles through the lens of a general equilibrium assessment," Energy Policy, Elsevier, vol. 48(C), pages 744-753.
  35. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
  36. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00850680. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.