IDEAS home Printed from https://ideas.repec.org/p/gmf/wpaper/2015-19..html
   My bibliography  Save this paper

Industry based equity premium forecasts

Author

Listed:
  • Nuno Silva

    () (University of Coimbra/GEMF)

Abstract

In this paper we used industry indexes to predict the equity premium in the US. We considered several types of predictive models: i) constant coefficients and constant volatility, ii) drifting coefficients and constant volatility, iii) constant coefficients and stochastic volatility and iv) drifting coefficients and stochastic volatility. The models were estimated through the particle learning algorithm, which is suitable for dealing with the problem that an investor faces in practice, given that it allows the investor to revise the parameters as new information arrives. All the models exhibit similar statistical predictive ability, but stochastic volatility models generate slightly higher utility gains.

Suggested Citation

  • Nuno Silva, 2015. "Industry based equity premium forecasts," GEMF Working Papers 2015-19, GEMF, Faculty of Economics, University of Coimbra.
  • Handle: RePEc:gmf:wpaper:2015-19.
    as

    Download full text from publisher

    File URL: http://www.uc.pt/feuc/gemf/working_papers/pdf/2015/gemf_2015-19
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kewei Hou, 2007. "Industry Information Diffusion and the Lead-lag Effect in Stock Returns," Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1113-1138.
    2. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    3. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    4. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    7. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    8. Peng, Lin & Xiong, Wei, 2006. "Investor attention, overconfidence and category learning," Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
    9. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    10. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    11. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    12. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    13. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    14. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    15. Gur Huberman & Tomer Regev, 2001. "Contagious Speculation and a Cure for Cancer: A Nonevent that Made Stock Prices Soar," Journal of Finance, American Finance Association, vol. 56(1), pages 387-396, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    equity premium prediction; industries; particle filter; combination of forecasts.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gmf:wpaper:2015-19.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Seiça). General contact details of provider: http://edirc.repec.org/data/cebucpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.