IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

AdMit: Adaptive Mixtures of Student-t Distributions

This short note presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. To illustrate the use of the package, we apply the AdMit methodology to a bivariate bimodal distribution. We describe the use of the functions provided by the package and document the ability and relevance of the methodology to reproduce the shape of non-elliptical distributions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:,44,2,20121204123927-QA/WP_DQE_10.pdf
Download Restriction: no

Paper provided by Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland in its series DQE Working Papers with number 10.

in new window

Length: 6 pages
Date of creation: 01 Aug 2008
Date of revision: 07 Jan 2009
Publication status: Published in The R Journal, 2009, vol. 1, no. 1, pp.25--31.
Handle: RePEc:fri:dqewps:wp0010
Contact details of provider: Postal: Bd de Pérolles 90, CH-1700 Fribourg
Phone: +41 26 300 8200
Fax: +41 26 300 9725
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, . "Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit," Journal of Statistical Software, American Statistical Association, vol. 29(i03).
  2. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
  3. Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "AdMit: Adaptive Mixtures of Student-t Distributions," DQE Working Papers 10, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
  4. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fri:dqewps:wp0010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ivo raemy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.