IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Semiparametric estimation in perturbed long memory series

  • Arteche González, Jesús María

The estimation of the memory parameter in perturbed long memory series has recently attracted attention motivated especially by the strong persistence of the volatility in many financial and economic time series and the use of Long Memory in Stochastic Volatility (LMSV) processes to model such a behaviour. This paper discusses frequency domain semiparametric estimation of the memory parameter and proposes an extension of the log periodogram regression which explicitly accounts for the added noise, comparing it, asymptotically and in finite samples, with similar extant techniques. Contrary to the non linear log periodogram regression of Sun and Phillips (2003), we do not use a linear approximation of the logarithmic term which accounts for the added noise. A reduction of the asymptotic bias is achieved in this way and makes possible a faster convergence in long memory signal plus noise series by permitting a larger bandwidth. Monte Carlo results confirm the bias reduction but at the cost of a higher variability. An application to a series of returns of the Spanish Ibex35 stock index is finally included.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10810/5665
Download Restriction: no

Paper provided by Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística) in its series BILTOKI with number 2005-02.

as
in new window

Length:
Date of creation: May 2005
Date of revision:
Handle: RePEc:ehu:biltok:200502
Contact details of provider: Postal: Avda. Lehendakari, Aguirre, 83, 48015 Bilbao
Phone: + 34 94 601 3740
Fax: + 34 94 601 4935
Web page: http://www.ea3.ehu.es
Email:


More information through EDIRC

Order Information: Postal: Dpto. de Econometría y Estadística, Facultad de CC. Económicas y Empresariales, Universidad del País Vasco, Avda. Lehendakari Aguirre 83, 48015 Bilbao, Spain
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter Robinson & Marc Henry, 2002. "Higher-order kernel semiparametric M-estimation of long memory," LSE Research Online Documents on Economics 2147, London School of Economics and Political Science, LSE Library.
  2. Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  3. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
  5. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  6. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  7. Arteche González, Jesús María, 2002. "Gaussian Semiparametric Estimation in Long Memory in Stochastic Volatility and Signal Plus Noise Models," BILTOKI 2002-02, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  8. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi-Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, 07.
  9. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
  10. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
  11. Donald W.K. Andrews & Yixiao Sun, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1384, Cowles Foundation for Research in Economics, Yale University.
  12. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  13. repec:cep:stiecm:/1998/360 is not listed on IDEAS
  14. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
  15. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, EconWPA.
  16. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ehu:biltok:200502. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alcira Macías)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.