IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Flow of conjunctural information and forecast of euro area economic activity

  • Drechsel, Katja
  • Maurin, Laurent

Euro area GDP and components are nowcast and forecast one quarter ahead. Based on a dataset of 163 series comprising the relevant monthly indicators, simple bridge equations with one explanatory variable are estimated for each. The individual forecasts generated by each equation are then pooled, using six weighting schemes including Bayesian ones. To take into consideration the release calendar of each indicator, six forecasts are compiled independently during the quarter, each based on different information sets: different indicators, different individual equations and finally different weights to aggregate information. The information content of the various blocks of information at different points in time for each GDP component is then discussed. It appears that taking into account the information flow results in significant changes in the weight allocated to each block of information, especially when the first month of hard data becomes available. This conclusion, reached for all the components and most of the weighting scheme, supports and extends the findings of Giannone, Reichlin and Small (2006) and Banbura and Rünstler (2007). An out-of-sample forecast comparison exercise is also carried out for each component and GDP directly. The forecast performance is found to vary widely across components. Two weighting schemes are found to outperform the equal weighting scheme in almost all cases. One-quarter ahead, the direct forecast of GDP is found to outperform the bottom-up approach. However, the nowcast resulting in the lowest forecast errors is derived from the bottom-up approach. JEL Classification: C22, C53, E17

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp925.pdf
Download Restriction: no

Paper provided by European Central Bank in its series Working Paper Series with number 0925.

as
in new window

Length:
Date of creation: Aug 2008
Date of revision:
Handle: RePEc:ecb:ecbwps:20080925
Contact details of provider: Postal: 60640 Frankfurt am Main, Germany
Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page: http://www.ecb.europa.eu/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Timmermann, Allan G, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
  2. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  3. Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 0633, European Central Bank.
  4. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  5. Massimiliano Marcellino, 2004. "Forecast Pooling for European Macroeconomic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 91-112, 02.
  6. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
  7. George Kapetanios & Vincent Labhard & Simon Price, 2006. "Forecasting using Bayesian and Information Theoretic Model Averaging: An Application to UK Inflation," Working Papers 566, Queen Mary University of London, School of Economics and Finance.
  8. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  9. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  10. Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
  11. Gary Koop & Simon Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
  12. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  13. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  14. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
  15. Darracq Pariès, Matthieu & Maurin, Laurent, 2008. "The role of country-specific trade and survey data in forecasting euro area manufacturing production: perspective from large panel factor models," Working Paper Series 0894, European Central Bank.
  16. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 0276, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20080925. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.