IDEAS home Printed from https://ideas.repec.org/p/dnb/staffs/107.html
   My bibliography  Save this paper

Forecasting inflation: An art as well as a science!

Author

Listed:
  • P.J.G. Vlaar
  • A.H.J. den Reijer

Abstract

In this study we build two forecasting models to predict inflation for the Netherlands and for the euro area. Inflation is the yearly change of the Harmonised Index of Consumer Prices (HICP). The models provide point forecasts and prediction intervals for both the components of the HICP and the aggregated HICP-index itself. Both models are small-scale linear time series models allowing for long run equilibrium relationships between HICP components and other variables, notably the hourly wage rate and the import or producer prices. The model for the Netherlands is used to generate the Dutch inflation projections over an horizon of 11-15 months ahead for the eurosystem's Narrow Inflation Projection Exercise (NIPE). The recursive forecast errors for several forecast horizons are evaluated for all models, and are found to outperform a naive forecast. Moreover, the same result holds for the Dutch NIPE projections, which have been provided quarterly since 1999. The direct and aggregation methods to predict total HICP inflation perform about equally good.

Suggested Citation

  • P.J.G. Vlaar & A.H.J. den Reijer, 2003. "Forecasting inflation: An art as well as a science!," DNB Staff Reports (discontinued) 107, Netherlands Central Bank.
  • Handle: RePEc:dnb:staffs:107
    as

    Download full text from publisher

    File URL: https://www.dnb.nl/binaries/staff107_tcm46-146884.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gabriel Moser & Fabio Rumler & Johann Scharler, 2004. "Forecasting Austrian Inflation," Working Papers 91, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, pages 785-813.
    3. Canova, Fabio, 2002. "G-7 Inflation forecasts," Working Paper Series 0151, European Central Bank.
    4. repec:sae:niesru:v:167:y::i:1:p:106-112 is not listed on IDEAS
    5. Inoue, Atsushi & Kilian, Lutz, 2003. "On the selection of forecasting models," Working Paper Series 214, European Central Bank.
    6. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
    7. Moser, Gabriel & Rumler, Fabio & Scharler, Johann, 2007. "Forecasting Austrian inflation," Economic Modelling, Elsevier, vol. 24(3), pages 470-480, May.
    8. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, pages 218-230.
    9. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, pages 450-458.
    10. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    11. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, pages 119-136.
    12. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, pages 293-335.
    13. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, pages 137-151.
    14. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, pages 540-554.
    15. David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Series Working Papers 78, University of Oxford, Department of Economics.
    16. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    17. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, pages 273-306.
    18. Kirstin Hubrich, 2004. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Computing in Economics and Finance 2004 230, Society for Computational Economics.
    19. Edwards, Sebastian, 2002. "The great exchange rate debate after Argentina," The North American Journal of Economics and Finance, Elsevier, pages 237-252.
    20. Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
    21. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    22. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, pages 293-335.
    23. K. Hubrich, 2001. "Forecasting euro area inflation: Does contemponaneous aggregration improve the forecasting performance," WO Research Memoranda (discontinued) 661, Netherlands Central Bank, Research Department.
    24. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    25. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, pages 540-554.
    26. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    27. Hendry, D.F. & Mizon, G.E., 1999. "On selecting policy analysis models by forecast accuracy," Discussion Paper Series In Economics And Econometrics 9918, Economics Division, School of Social Sciences, University of Southampton.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos, Thiago Carlomagno & Marçal, Emerson Fernandes, 2013. "Forecasting Brazilian inflation by its aggregate and disaggregated data: a test of predictive power by forecast horizon," Textos para discussão 346, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    2. Espasa, Antoni & Albacete, Rebeca, 2005. "Forecasting inflation in the euro area using monthly time series models and quarterly econometric models," DES - Working Papers. Statistics and Econometrics. WS ws050401, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Georgarakos, Dimitris & Lojschova, Adriana & Ward-Warmedinger, Melanie E., 2009. "Mortgage Indebtedness and Household Financial Distress," IZA Discussion Papers 4631, Institute for the Study of Labor (IZA).
    4. Gilbert Cette & Christian Pfister, 2003. "The challenges of the "new economy" for monetary policy," BIS Papers chapters,in: Bank for International Settlements (ed.), Monetary policy in a changing environment, volume 19, pages 213-233 Bank for International Settlements.
    5. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    6. Janine Aron & John Muellbauer, 2008. "New methods for forecasting inflation and its sub-components: application to the USA," Economics Series Working Papers 406, University of Oxford, Department of Economics.
    7. Mihaela SIMIONESCU, 2014. "Improving The Inflation Rate Forecasts Of Romanian Experts Using A Fixed-Effects Models Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 87-102, June.
    8. Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
    9. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
    10. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, pages 456-476.
    11. Bayer, Patrick & Khan, Shakeeb & Timmins, Christopher, 2011. "Nonparametric Identification and Estimation in a Roy Model With Common Nonpecuniary Returns," Journal of Business & Economic Statistics, American Statistical Association, pages 201-215.
    12. Demertzis, Maria & Hughes Hallett, Andrew, 2005. "Forming Rational Expectations and When it is Right to be 'Wrong'," CEPR Discussion Papers 5042, C.E.P.R. Discussion Papers.
    13. Aron, Janine & Muellbauer, John, 2010. "Does aggregating forecasts by CPI component improve inflation forecast accuracy in South Africa?," CEPR Discussion Papers 7895, C.E.P.R. Discussion Papers.
    14. Fedotenkov, Igor, 2015. "Optimal asymmetric taxation in a two-sector model with population ageing," MPRA Paper 66053, University Library of Munich, Germany.
    15. Demertzis, Maria & Hughes Hallett, Andrew, 2008. "Asymmetric information and rational expectations: When is it right to be "wrong"?," Journal of International Money and Finance, Elsevier, vol. 27(8), pages 1407-1419, December.
    16. David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, pages 216-227.

    More about this item

    Keywords

    inflation; model selection; time series models;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dnb:staffs:107. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rob Vet). General contact details of provider: http://edirc.repec.org/data/dnbgvnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.