IDEAS home Printed from https://ideas.repec.org/p/dnb/dnbwpp/106.html
   My bibliography  Save this paper

Regime transplants in GDP growth forecasting: A recipe for better predictions?

Author

Listed:
  • Lennard van Gelder
  • Ad Stokman

Abstract

Formal testing and estimation of nonlinear relations require a substantial number of observations which are typically lacking in annual models. In this paper, a novel two-step procedure is introduced to model nonlinearities in yearly asset-price based leading indicator models for growth. In the first step, quarterly data are explored to test for the presence of regime switches, the identif ication of transition variables and estimation of the accompanying thresholds. In the second step, we implement the quarterly thresholds in the annual indicator models. Results for the US and the Netherlands show that the annual forecasts improve compared to the linear model, despite the poor out-of-sample performance of the quarterly regime switching models.

Suggested Citation

  • Lennard van Gelder & Ad Stokman, 2006. "Regime transplants in GDP growth forecasting: A recipe for better predictions?," DNB Working Papers 106, Netherlands Central Bank, Research Department.
  • Handle: RePEc:dnb:dnbwpp:106
    as

    Download full text from publisher

    File URL: https://www.dnb.nl/binaries/Working%20Paper%20No%20106-2006_tcm46-146763.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. P J A van Els & W A van den End & M C J van Rooij, 2005. "Financial behaviour of Dutch households: analysis of the DNB Household Survey 2003," BIS Papers chapters,in: Bank for International Settlements (ed.), Investigating the relationship between the financial and real economy, volume 22, pages 21-39 Bank for International Settlements.
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Jansen, W. Jos & Nahuis, Niek J., 2003. "The stock market and consumer confidence: European evidence," Economics Letters, Elsevier, vol. 79(1), pages 89-98, April.
    4. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    5. Ólan T. Henry & Nilss Olekalns & Jonathan Thong, 2004. "Do stock market returns predict changes to output? Evidence from a nonlinear panel data model," Empirical Economics, Springer, vol. 29(3), pages 527-540, September.
    6. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, March.
    9. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    10. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    11. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    12. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    leading indicators; gdp growth; non-linear models.;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dnb:dnbwpp:106. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rob Vet). General contact details of provider: http://edirc.repec.org/data/dnbgvnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.