IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Fear Index to Predict Oil Futures Returns

  • Sévi, Benoît
  • Chevallier, Julien

This paper evaluates the predictability of WTI light sweet crude oil futures by using the variance risk premium, i.e. the difference between model-free measures of implied and realized volatilities. Additional regressors known for their ability to explain crude oil futures prices are also considered, capturing macroeconomic, financial and oil-specific influences. The results indicate that the explanatory power of the (negative) variance risk premium on oil excess returns is particularly strong (up to 25% for the adjusted Rsquared across our regressions). It complements other financial (e.g. default spread) and oil-specific (e.g. US oil stocks) factors highlighted in previous literature.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://basepub.dauphine.fr/xmlui/bitstream/123456789/11714/1/2013791551404NDL2013-062.pdf
Download Restriction: no

Paper provided by Paris Dauphine University in its series Economics Papers from University Paris Dauphine with number 123456789/11714.

as
in new window

Length:
Date of creation: May 2013
Date of revision:
Publication status: Published in Note di lavoro, 2013
Handle: RePEc:dau:papers:123456789/11714
Contact details of provider: Web page: http://www.dauphine.fr/en/welcome.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  3. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
  4. Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
  5. Baumeister, Christiane & Kilian, Lutz, 2011. "Real-Time Forecasts of the Real Price of Oil," CEPR Discussion Papers 8414, C.E.P.R. Discussion Papers.
  6. repec:cii:cepiei:2011-q2-3-126-127 is not listed on IDEAS
  7. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2012. "On the Macroeconomic Determinants of the Long-Term Oil-Stock Correlation," Working Papers 0525, University of Heidelberg, Department of Economics.
  8. Knetsch, Thomas A., 2006. "Forecasting the price of crude oil via convenience yield predictions," Discussion Paper Series 1: Economic Studies 2006,12, Deutsche Bundesbank, Research Centre.
  9. Doran, James S. & Ronn, Ehud I., 2008. "Computing the market price of volatility risk in the energy commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2541-2552, December.
  10. Sévi, Benoît & Le Pen, Yannick, 2013. "Futures trading and the excess comovement of commodity prices," Economics Papers from University Paris Dauphine 123456789/11382, Paris Dauphine University.
  11. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, School of Economics and Management, University of Aarhus.
  12. Frans A. de Roon & Theo E. Nijman & Chris Veld, 2000. "Hedging Pressure Effects in Futures Markets," Journal of Finance, American Finance Association, vol. 55(3), pages 1437-1456, 06.
  13. Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
  14. Chevallier, Julien & Aboura, Sofiane, 2013. "Leverage vs. Feedback: Which Effect Drives the Oil Market ?," Economics Papers from University Paris Dauphine 123456789/9860, Paris Dauphine University.
  15. Bali, Turan G. & Engle, Robert F., 2010. "The intertemporal capital asset pricing model with dynamic conditional correlations," Journal of Monetary Economics, Elsevier, vol. 57(4), pages 377-390, May.
  16. Kaufmann, Robert K., 2011. "The role of market fundamentals and speculation in recent price changes for crude oil," Energy Policy, Elsevier, vol. 39(1), pages 105-115, January.
  17. Julien Chevallier, 2013. "Price relationships in crude oil futures: new evidence from CFTC disaggregated data," Environmental Economics and Policy Studies, Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(2), pages 133-170, April.
  18. Zagaglia, Paolo, 2009. "Macroeconomic Factors and Oil Futures Prices: A Data-Rich Model," Research Papers in Economics 2009:7, Stockholm University, Department of Economics.
  19. Driesprong, Gerben & Jacobsen, Ben & Maat, Benjamin, 2008. "Striking oil: Another puzzle?," Journal of Financial Economics, Elsevier, vol. 89(2), pages 307-327, August.
  20. Yannick Le Pen & Benoît Sévi, 2011. "Macro factors in oil futures returns," Economie Internationale, CEPII research center, issue 126-127, pages 13-38.
  21. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
  22. Harrison Hong & Motohiro Yogo, 2011. "What Does Futures Market Interest Tell Us about the Macroeconomy and Asset Prices?," NBER Working Papers 16712, National Bureau of Economic Research, Inc.
  23. Bing Han, 2008. "Investor Sentiment and Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 387-414, January.
  24. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-69, June.
  25. Alquist, Ron & Kilian, Lutz, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
  26. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  27. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
  28. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
  29. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
  30. Nikolay Gospodinov & Serena Ng, 2013. "Commodity Prices, Convenience Yields, and Inflation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 206-219, March.
  31. repec:ipg:wpaper:19 is not listed on IDEAS
  32. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
  33. repec:taf:jnlbes:v:30:y:2012:i:2:p:326-336 is not listed on IDEAS
  34. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(01), pages 91-115, March.
  35. Lin Peng & Turan G. Bali, 2006. "Is there a risk-return trade-off? Evidence from high-frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:dau:papers:123456789/11714. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alexandre Faure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.