IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Evolutionary Dynamics May Eliminate All Strategies Used in Correlated Equilibria

  • Viossat, Yannick

We show on a 4x4 example that many dynamics may eliminate all strategies used in correlated equilibria, and this for an open set of games. This holds for the best-response dynamics, the Brown-von Neumann-Nash dynamics and any monotonic or weakly sign-preserving dynamics satisfying some standard regularity conditions. For the replicator dynamics and the best-response dynamics, elimination of all strategies used in correlated equilibrium is shown to be robust to the addition of mixed strategies as new pure strategies.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Paris Dauphine University in its series Economics Papers from University Paris Dauphine with number 123456789/1119.

as
in new window

Length:
Date of creation: Jul 2008
Date of revision:
Publication status: Published in Mathematical Social Sciences, 2008, Vol. 56, no. 1. pp. 27-43.Length: 16 pages
Handle: RePEc:dau:papers:123456789/1119
Contact details of provider: Web page: http://www.dauphine.fr/en/welcome.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
  2. Samuelson, L. & Zhang, J., 1991. "Evolutionary Stability in Asymmetric Games," Papers 9132, Tilburg - Center for Economic Research.
  3. Yannick Viossat, 2008. "Evolutionary Dynamics May Eliminate All Strategies Used in Correlated Equilibria," Post-Print hal-00360756, HAL.
  4. Viossat, Yannick, 2008. "Is Having a Unique Equilibrium Robust?," Economics Papers from University Paris Dauphine 123456789/387, Paris Dauphine University.
  5. Dan Friedman, 2010. "Evolutionary Games in Economics," Levine's Working Paper Archive 392, David K. Levine.
  6. Hofbauer, Josef & Weibull, Jorgen W., 1996. "Evolutionary Selection against Dominated Strategies," Journal of Economic Theory, Elsevier, vol. 71(2), pages 558-573, November.
  7. K. Ritzberger & J. Weibull, 2010. "Evolutionary Selection in Normal-Form Games," Levine's Working Paper Archive 452, David K. Levine.
  8. Berger, Ulrich & Hofbauer, Josef, 2006. "Irrational behavior in the Brown-von Neumann-Nash dynamics," Games and Economic Behavior, Elsevier, vol. 56(1), pages 1-6, July.
  9. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer, vol. 19(1), pages 59-89.
  10. Samuelson, Larry & Zhang, Jianbo, 1992. "Evolutionary stability in asymmetric games," Journal of Economic Theory, Elsevier, vol. 57(2), pages 363-391, August.
  11. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
  12. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
  13. Viossat, Yannick, 2007. "The replicator dynamics does not lead to correlated equilibria," Games and Economic Behavior, Elsevier, vol. 59(2), pages 397-407, May.
  14. R. Aumann, 2010. "Subjectivity and Correlation in Randomized Strategies," Levine's Working Paper Archive 389, David K. Levine.
  15. Sergiu Hart & Andreu Mas-Colell, 2001. "Regret-Based Continuous-Time Dynamics," Discussion Paper Series dp309, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem, revised Apr 2003.
  16. Yannick Viossat, 2005. "Openness of the set of games with a unique correlated equilibrium," Working Papers hal-00243016, HAL.
  17. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181, March.
  18. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-67, May.
  19. Myerson, Roger B., 1994. "Communication, correlated equilibria and incentive compatibility," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 24, pages 827-847 Elsevier.
  20. Sergiu Hart, 2004. "Adaptive Heuristics," Levine's Bibliography 122247000000000471, UCLA Department of Economics.
  21. Monderer, Dov & Sela, Aner, 1997. "Fictitious play and- no-cycling conditions," Sonderforschungsbereich 504 Publications 97-12, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
  22. Swinkels Jeroen M., 1993. "Adjustment Dynamics and Rational Play in Games," Games and Economic Behavior, Elsevier, vol. 5(3), pages 455-484, July.
  23. L. Samuelson & J. Zhang, 2010. "Evolutionary Stability in Asymmetric Games," Levine's Working Paper Archive 453, David K. Levine.
  24. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-66, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:dau:papers:123456789/1119. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alexandre Faure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.