IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Recombining partitions from multivariate data: a clustering method on Bayes factors

  • Adolfo Álvarez


  • Daniel Peña


Registered author(s):

    We introduce SAGRA (Split And Group Recombining Algorithm), a cluster analysis methodology which split the data set into small homogeneous groups and later recombine those groups using Bayes factors. We compare the performance of SAGRA with other three cluster analysis algorithms: SAR, M-clust and K-means, using five quality measures: Purity, number of groups, Rand index, adjusted Rand index, and F1, over four different data configurations. Results indicate that the SAGRA algorithm obtain consistently similar or better indexes than the other algorithms over all measures and data configurations

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws1450804.

    in new window

    Date of creation: Mar 2014
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws1450804
    Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Mark Culp, . "spa: Semi-Supervised Semi-Parametric Graph-Based Estimation in R," Journal of Statistical Software, American Statistical Association, vol. 40(i10).
    2. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer, vol. 4(1), pages 3-34, April.
    3. Atkinson, A.C. & Riani, M., 2007. "Exploratory tools for clustering multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 272-285, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws1450804. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.