IDEAS home Printed from https://ideas.repec.org/p/cte/idrepe/id-14-04.html
   My bibliography  Save this paper

Optimal reinsurance under risk and uncertainty

Author

Listed:
  • Balbas de la Corte, Alejandro
  • Balbas Aparicio, Beatriz
  • Balbas Aparicio, Raquel
  • Heras, Antonio

Abstract

This paper deals with the optimal reinsurance problem if both insurer and reinsurer are facing risk and uncertainty, though the classical uncertainty free case is also included. The insurer and reinsurer degrees of uncertainty do not have to be identical. The decision variable is not the retained (or ceded) risk, but its sensitivity with respect to the total claims. Thus, if one imposes strictly positive lower bounds for this variable, the reinsurer moral hazard is totally eliminated. Three main contributions seem to be reached. Firstly, necessary and sufficient opti- mality conditions are given. Secondly, the optimal contract is often a bang-bang solution, i:e:, the sensitivity between the retained risk and the total claims saturates the imposed constraints. For some special cases the optimal contract might not be bang-bang, but there is always a bang-bang contract as close as desired to the optimal one. Thirdly, the optimal reinsurance problem is equivalent to other linear programming problem, despite the fact that risk, uncertainty, and many premium principles are not linear. This may be impor- tant because linear problems are easy to solve in practice, since there are very efficient algorithms.

Suggested Citation

  • Balbas de la Corte, Alejandro & Balbas Aparicio, Beatriz & Balbas Aparicio, Raquel & Heras, Antonio, 2014. "Optimal reinsurance under risk and uncertainty," INDEM - Working Paper Business Economic Series id-14-04, Instituto para el Desarrollo Empresarial (INDEM).
  • Handle: RePEc:cte:idrepe:id-14-04
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/19024/indemwp14_04.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, May.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    4. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    5. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    6. Peter Bossaerts & Paolo Ghirardato & Serena Guarnaschelli & William R. Zame, 2010. "Ambiguity in Asset Markets: Theory and Experiment," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1325-1359, April.
    7. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    8. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    9. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    10. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Risk and uncertainty;

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:idrepe:id-14-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/indem .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.