IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Higher Order Improvements for Approximate Estimators

  • Dennis Kristensen

    ()

    (Columbia University - Department of Economics)

  • Bernard Salanie

    ()

    (Columbia University - Department of Economics)

Many modern estimation methods in econometrics approximate an objective function, through simulation or discretization for instance. The resulting "approximate" estimator is often biased; and it always incurs an efficiency loss. We here propose three methods to improve the properties of such approximate estimators at a low computational cost. The first two methods correct the objective function so as to remove the leading term of the bias due to the approximation. One variant provides an analytical bias adjustment, but it only works for estimators based on stochastic approximators, such as simulation-based estimators. Our second bias correction is based on ideas from the resampling literature; it eliminates the leading bias term for non-stochastic as well as stochastic approximators. Finally, we propose an iterative procedure where we use Newton-Raphson (NR) iterations based on a much finer degree of approximation. The NR step removes some or all of the additional bias and variance of the initial approximate estimator. A Monte Carlo simulation on the mixed logit model shows that noticeable improvements can be obtained rather cheaply.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.columbia.edu/RePEc/pdf/DP0910-15.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.econ.columbia.edu/RePEc/pdf/DP0910-15.pdf [301 Moved Permanently]--> http://econ.columbia.edu/RePEc/pdf/DP0910-15.pdf). If this is indeed the case, please notify (Discussion Paper Coordinator)


Download Restriction: no

Paper provided by Columbia University, Department of Economics in its series Discussion Papers with number 0910-15.

as
in new window

Length:
Date of creation: 2010
Date of revision:
Handle: RePEc:clu:wpaper:0910-15
Contact details of provider: Postal: 1022 International Affairs Building, 420 West 118th Street, New York, NY 10027
Phone: (212) 854-3680
Fax: (212) 854-8059
Web page: http://www.econ.columbia.edu/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jesús Fernández-Villaverde & Juan Francisco Rubio-Ramírez, 2004. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," Working Paper 2004-3, Federal Reserve Bank of Atlanta.
  2. Andrews, Donald W.K., 2002. "EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS," Econometric Theory, Cambridge University Press, vol. 18(05), pages 1040-1085, October.
  3. Newey, W.K., 1989. "Uniform Convergence In Probability And Stochastic Equicontinuity," Papers 342, Princeton, Department of Economics - Econometric Research Program.
  4. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1433-1445, October.
  5. Valentina Corradi & Norman R. Swanson, 2003. "Evaluation of Dynamic Stochastic General Equilibrium Models Based on Distributional Comparison of Simulated and Historical Data," Departmental Working Papers 200320, Rutgers University, Department of Economics.
  6. Fermanian, Jean-David & Salani , Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(04), pages 701-734, August.
  7. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(04), pages 518-552, December.
  8. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-90, July.
  9. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function is not Smooth," STICERD - Econometrics Paper Series /2003/450, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  10. Jes�s Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, 01.
  11. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  12. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 437-483, June.
  13. repec:fth:inseep:9315 is not listed on IDEAS
  14. Chen, Xiaohong & White, Halbert, 1998. "Nonparametric Adaptive Learning with Feedback," Journal of Economic Theory, Elsevier, vol. 82(1), pages 190-222, September.
  15. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
  16. Lee, Lung-fei, 2001. "Interpolation, Quadrature, And Stochastic Integration," Econometric Theory, Cambridge University Press, vol. 17(05), pages 933-961, October.
  17. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  18. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
  19. Michael Creel & Dennis Kristensen, 2009. "Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments," UFAE and IAE Working Papers 792.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  20. DHAENE, Geert & JOCHMANS, Koen, 2010. "Split-panel jackknife estimation of fixed-effect models," CORE Discussion Papers 2010003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  21. Lee, Lung-fei, 1999. "Statistical Inference With Simulated Likelihood Functions," Econometric Theory, Cambridge University Press, vol. 15(03), pages 337-360, June.
  22. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(05), pages 946-961, October.
  23. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(03), pages 295-313, December.
  24. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, 05.
  25. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, 09.
  26. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 413-450.
  27. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  28. Jinyong Hahn & Whitney Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers CWP17/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  29. Linton, Oliver, 1996. "Edgeworth Approximation for MINPIN Estimators in Semiparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 12(01), pages 30-60, March.
  30. Christian Gouriéroux & Peter C. B. Phillips & Jun Yu, 2006. "Indirect Inference for Dynamic Panel Models," Development Economics Working Papers 22421, East Asian Bureau of Economic Research.
  31. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
  32. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  33. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
  34. V A Hajivassiliou, 1997. "Some Practical Issues in Maximum Simulated Likelihood," STICERD - Econometrics Paper Series /1997/340, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  35. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-48, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:clu:wpaper:0910-15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Discussion Paper Coordinator)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.