IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimating Semiparametric ARCH (8) Models by Kernel Smoothing Methods

  • Oliver Linton
  • Enno Mammen

We investigate a class of semiparametric ARCH(8) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the 'news impact' function. We propose an estimation method that is based on kernel smoothing and profiled likelihood. We establish the distribution theory of the parametric components and the pointwise distribution of the nonparametric component of the model. We also discuss efficiency of both the parametric and nonparametric part. We investigate the performance of our procedures on simulated data and on a sample of S&P500 daily returns. We find some evidence of asymmetric news impact functions in the data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://sticerd.lse.ac.uk/dps/em/em453.pdf
Download Restriction: no

Paper provided by Suntory and Toyota International Centres for Economics and Related Disciplines, LSE in its series STICERD - Econometrics Paper Series with number /2003/453.

as
in new window

Length:
Date of creation: May 2003
Date of revision:
Handle: RePEc:cep:stiecm:/2003/453
Contact details of provider: Web page: http://sticerd.lse.ac.uk/_new/publications/default.asp

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John Rust & Department of Economics & University of Wisconsin, 1994. "Using Randomization to Break the Curse of Dimensionality," Computational Economics 9403001, EconWPA, revised 04 Jul 1994.
  2. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  3. Adrian R. Pagan & G. William Schwert, 1990. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
  4. Woocheol Kim & Oliver Linton, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
  5. Serge Darolles & Jean-Pierre Florens & Yanqin Fan & Eric Renault, 2011. "Nonparametric Instrumental Regression," Working Papers 245432, Institut National de la Recherche Agronomique, France.
  6. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-96, May.
  7. Carroll, Raymond J. & H rdle, Wolfgang & Mammen, Enno, 2002. "Estimation In An Additive Model When The Components Are Linked Parametrically," Econometric Theory, Cambridge University Press, vol. 18(04), pages 886-912, August.
  8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  9. Yang, Lijian & Härdle, Wolfgang & Nielsen, Jens P., 1998. "Nonparametric autoregression with multiplicative volatility and additive mean," SFB 373 Discussion Papers 1998,107, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  10. repec:ner:tilbur:urn:nbn:nl:ui:12-153273 is not listed on IDEAS
  11. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  12. Drost, F.C. & Nijman, T.E., 1990. "Temporal Aggregation Of Garch Processes," Papers 9066, Tilburg - Center for Economic Research.
  13. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  14. Enno Mammen & Oliver Linton & J Nielsen, 2000. "The existence and asymptotic properties of a backfitting projection algorithm under weak conditions," LSE Research Online Documents on Economics 2315, London School of Economics and Political Science, LSE Library.
  15. Peter Hall & Joel L. Horowitz, 2003. "Nonparametric methods for inference in the presence of instrumental variables," CeMMAP working papers CWP02/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  16. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  17. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  18. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  19. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
  20. Joel Horowitz & Enno Mammen, 2002. "Nonparametric estimation of an additive model with a link function," CeMMAP working papers CWP19/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  21. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
  22. Oliver Linton, 1993. "Adaptive Estimation in ARCH Models," Cowles Foundation Discussion Papers 1054, Cowles Foundation for Research in Economics, Yale University.
  23. repec:cup:etheor:v:13:y:1997:i:2:p:214-52 is not listed on IDEAS
  24. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  25. repec:cup:etheor:v:9:y:1993:i:4:p:539-69 is not listed on IDEAS
  26. Wolfgang HÄRDLE & A. TSYBAKOV, 1995. "Local Polynomial Estimators of the Volatility Function in Nonparametric Autoregression," SFB 373 Discussion Papers 1995,42, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  27. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  28. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
  29. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  30. Masry, Elias & Tjøstheim, Dag, 1997. "Additive Nonlinear ARX Time Series and Projection Estimates," Econometric Theory, Cambridge University Press, vol. 13(02), pages 214-252, April.
  31. Horowitz, Joel L. & Mammen, Enno, 2002. "Nonparametric estimation of an additive model with a link function," SFB 373 Discussion Papers 2002,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:/2003/453. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.