IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Semiparametric Inference in Seasonal and Cyclical Long Memory Processes - (Now published in Journal of Time Series Analysis, 21 (2000), pp.1-25.)

  • Josu Artech
  • Peter M Robinson

Several semiparametric estimates of the memory parameter in standard long memory time series are now available. They consider only local behaviour of the spectrum near zero frequency, about which the spectrum is symmetric. However, long-range dependence can appear as a spectral pole at any Nyqvist frequency (reflecting seasonal or cyclical long memory), where the spectrym need display no such symmetry. We introduce Seasonal/Cyclical Asymmetric Long Memory (SCALM) processes that allow differing rates of increase on either side of such a pole. To estimate the two consequent memory parameters we extend two semiparametric methods that were proposed for the standard case of a spectrum diverging at the origin, namely the log-periodogram and Gaussian or Whittle methods. We also provide three tests of symmetry. Monte Carlo analysis of finite sample behaviour and an empirical application to UK inflation data are included. Our models and methods allow also for the posssibility of negative dependence, described by a possibly asymmetric spectral zero.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Suntory and Toyota International Centres for Economics and Related Disciplines, LSE in its series STICERD - Econometrics Paper Series with number /1998/359.

in new window

Date of creation: Sep 1998
Date of revision:
Handle: RePEc:cep:stiecm:/1998/359
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:/1998/359. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.