IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Random-Time Binomial Model

  • Leisen, Dietmar
Registered author(s):

    In this paper we study Binomial Models with random time steps. We explain, how calculating values for European and American Call and Put options is straightforward for the Random-Time Binomial Model. We present the conditions to ensure weak-convergence to the Black-Scholes setup and convergence of the values for European and American put options. Differently to the CRR-model the convergence behaviour is extremely smooth in our model. By using extrapolation we therefore achieve order of convergence two. This way it is an efficient tool for pricing purposes in the Black-Scholes setup, since the CRR model and its extrapolations typically achieve order one. Moreover our model allows in a straightforward manner to construct approximations to jump-diffusions. The simple valuation approaches and the convergence properties carry immediately over from the Black-Scholes case.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.wiwi.uni-bonn.de/bgsepapers/bonsfb/bonsfb399.pdf
    Download Restriction: no

    Paper provided by University of Bonn, Germany in its series Discussion Paper Serie B with number 399.

    as
    in new window

    Length: pages
    Date of creation: Feb 1997
    Date of revision:
    Handle: RePEc:bon:bonsfb:399
    Contact details of provider: Postal: Bonn Graduate School of Economics, University of Bonn, Adenauerallee 24 - 26, 53113 Bonn, Germany
    Fax: +49 228 73 6884
    Web page: http://www.bgse.uni-bonn.de

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sondermann, Dieter, 1987. "Currency options: Hedging and social value," European Economic Review, Elsevier, vol. 31(1-2), pages 246-256.
    2. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-51, July.
    3. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Leisen, Dietmar, 1996. "Pricing the American Put Option: A Detailed Convergence Analysis for Binomial Models," Discussion Paper Serie B 366, University of Bonn, Germany, revised Jul 1996.
    6. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    8. L.C.G. Rogers & E.J. Stapleton, 1997. "Fast accurate binomial pricing," Finance and Stochastics, Springer, vol. 2(1), pages 3-17.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bon:bonsfb:399. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (BGSE Office)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.