IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Rage Against the Machines: How Subjects Learn to Play Against Computers

  • Peter Dürsch
  • Albert Kolb
  • Jörg Oechssler
  • Burkhard C. Schipper

We use an experiment to explore how subjects learn to play against computers which are programmed to follow one of a number of standard learning algorithms. The learning theories are (unbeknown to subjects) a best response process, fictitious play, imitation, reinforcement learning, and a trial & error process. We test whether subjects try to influence those algorithms to their advantage in a forward-looking way (strategic teaching). We find that strategic teaching occurs frequently and that all learning algorithms are subject to exploitation with the notable exception of imitation. The experiment was conducted, both, on the internet and in the usual laboratory setting. We find some systematic differences, which however can be traced to the different incentives structures rather than the experimental environment

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.wiwi.uni-bonn.de/bgsepapers/bonedp/bgse31_2005.pdf
Download Restriction: no

Paper provided by University of Bonn, Germany in its series Bonn Econ Discussion Papers with number bgse31_2005.

as
in new window

Length: 45
Date of creation: Oct 2005
Date of revision:
Handle: RePEc:bon:bonedp:bgse31_2005
Contact details of provider: Postal:
Bonn Graduate School of Economics, University of Bonn, Adenauerallee 24 - 26, 53113 Bonn, Germany

Fax: +49 228 73 6884
Web page: http://www.bgse.uni-bonn.de

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jose Apesteguia & Steffen Huck & Jorg Oechssler, 2003. "Imitation - Theory and Experimental Evidence," Experimental 0309001, EconWPA.
  2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
  3. Offerman, T.J.S. & Potters, J.J.M. & Sonnemans, J., 2002. "Imitation and belief learning in an oligopoly experiment," Other publications TiSEM a6a771c5-31ba-4193-8f76-a, Tilburg University, School of Economics and Management.
  4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  5. Jason Shachat & J. Todd Swarthout, 2002. "Learning about Learning in Games through Experimental Control of Strategic Interdependence," Experimental Economics Center Working Paper Series 2006-17, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University, revised Aug 2008.
  6. Carlos Alós-Ferrer, 2001. "Cournot versus Walras in Dynamic Oligopolies with Memory," Vienna Economics Papers 0110, University of Vienna, Department of Economics.
  7. McCabe, Kevin & Houser, Daniel & Ryan, Lee & Smith, Vernon & Trouard, Ted, 2001. "A Functional Imaging Study of Cooperation in Two-Person reciprocal Exchange," MPRA Paper 5172, University Library of Munich, Germany.
  8. Vahid, F. & Sarin, R., 2001. "Strategy Similarity and Coordination," Monash Econometrics and Business Statistics Working Papers 8/01, Monash University, Department of Econometrics and Business Statistics.
  9. Burkhard C. Schipper, 2005. "Imitators and Optimizers in Cournot oligopoly," Working Papers 537, University of California, Davis, Department of Economics.
  10. Kirchkamp, Oliver & Nagel, Rosemarie, 2007. "Naive learning and cooperation in network experiments," Games and Economic Behavior, Elsevier, vol. 58(2), pages 269-292, February.
  11. Mathias Drehmann & Jörg Oechssler & Andreas Roider, 2005. "Herding and Contrarian Behavior in Financial Markets: An Internet Experiment," American Economic Review, American Economic Association, vol. 95(5), pages 1403-1426, December.
  12. Burkhard Schipper, 2011. "Strategic Control of Myopic Best Reply in Repeated Games," Working Papers 115, University of California, Davis, Department of Economics.
  13. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
  14. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
  15. Glen Ellison, 2010. "Learning from Personal Experience: One Rational Guy and the Justification of Myopia," Levine's Working Paper Archive 413, David K. Levine.
  16. Steffen Huck & Hans-Theo Normann & Joerg Oechssler, 2004. "Through Trial and Error to Collusion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 205-224, 02.
  17. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 2004. "Two are few and four are many: number effects in experimental oligopolies," Journal of Economic Behavior & Organization, Elsevier, vol. 53(4), pages 435-446, April.
  18. Kirchkamp, Oliver & Nagel, Rosemarie, 2005. "Learning and cooperation in network experiments," Papers 05-27, Sonderforschungsbreich 504.
  19. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 1999. "Learning in Cournot Oligopoly--An Experiment," Economic Journal, Royal Economic Society, vol. 109(454), pages C80-95, March.
  20. Drew Fudenberg & David K. Levine, 1996. "The Theory of Learning in Games," Levine's Working Paper Archive 624, David K. Levine.
  21. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  22. Walker, James M. & Smith, Vernon L. & Cox, James C., 1987. "Bidding behavior in first price sealed bid auctions : Use of computerized Nash competitors," Economics Letters, Elsevier, vol. 23(3), pages 239-244.
  23. Daniel Houser & Robert Kurzban, 2002. "Revisiting Kindness and Confusion in Public Goods Experiments," American Economic Review, American Economic Association, vol. 92(4), pages 1062-1069, September.
  24. Roth, Alvin E & Schoumaker, Francoise, 1983. "Expectations and Reputations in Bargaining: An Experimental Study," American Economic Review, American Economic Association, vol. 73(3), pages 362-72, June.
  25. Steffen Huck & Hans-Theo Normann & Joerg Oechssler, 1998. "Through Trial & Error to Collusion," Game Theory and Information 9811004, EconWPA, revised 24 Nov 1998.
  26. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
  27. J.-F. Laslier & R. Topol & B. Walliser, 1999. "A behavioral learning process in games," THEMA Working Papers 99-03, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  28. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bon:bonedp:bgse31_2005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (BGSE Office)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.