IDEAS home Printed from https://ideas.repec.org/p/bof/bofrdp/2020_004.html
   My bibliography  Save this paper

Forecasting inflation with the New Keynesian Phillips curve : Frequency matters

Author

Listed:
  • Martins, Manuel M. F.
  • Verona, Fabio

Abstract

We show that the New Keynesian Phillips Curve (NKPC) outperforms standard benchmarks in forecasting U.S. inflation once frequency-domain information is taken into account. We do so by decomposing the time series (of inflation and its predictors) into several frequency bands and forecasting separately each frequency component of inflation. The largest statistically significant forecasting gains are achieved with a model that forecasts the lowest frequency component of inflation (corresponding to cycles longer than 16 years) flexibly using information from all frequency components of the NKPC inflation predictors. Its performance is particularly good in the returning to recovery from the Great Recession.

Suggested Citation

  • Martins, Manuel M. F. & Verona, Fabio, 2020. "Forecasting inflation with the New Keynesian Phillips curve : Frequency matters," Research Discussion Papers 4/2020, Bank of Finland.
  • Handle: RePEc:bof:bofrdp:2020_004
    as

    Download full text from publisher

    File URL: https://helda.helsinki.fi/bof/bitstream/123456789/17004/1/BoF_DP_2004.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Gallegati & Mauro Gallegati & James Bernard Ramsey & Willi Semmler, 2011. "The US Wage Phillips Curve across Frequencies and over Time," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(4), pages 489-508, August.
    2. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    3. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    4. Olivier Coibion & Yuriy Gorodnichenko & Rupal Kamdar, 2018. "The Formation of Expectations, Inflation, and the Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 56(4), pages 1447-1491, December.
    5. Olivier Coibion & Yuriy Gorodnichenko & Saten Kumar, 2018. "How Do Firms Form Their Expectations? New Survey Evidence," American Economic Review, American Economic Association, vol. 108(9), pages 2671-2713, September.
    6. Paul Beaudry & Dana Galizia & Franck Portier, 2020. "Putting the Cycle Back into Business Cycle Analysis," American Economic Review, American Economic Association, vol. 110(1), pages 1-47, January.
    7. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    8. Luís Aguiar-Conraria & Manuel M. F. Martins & Maria Joana Soares, 2019. "The Phillips Curve at 60: time for time and frequency," CEF.UP Working Papers 1902, Universidade do Porto, Faculdade de Economia do Porto.
    9. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    10. Caraiani, Petre, 2017. "Evaluating exchange rate forecasts along time and frequency," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 60-81.
    11. António Rua, 2011. "A wavelet approach for factor‐augmented forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 666-678, November.
    12. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    13. Fabio Verona, 2020. "Investment, Tobin's Q, and Cash Flow Across Time and Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(2), pages 331-346, April.
    14. Fuhrer, Jeff, 2017. "Expectations as a source of macroeconomic persistence: Evidence from survey expectations in a dynamic macro model," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 22-35.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    17. Theo Berger, 2016. "Forecasting Based on Decomposed Financial Return Series: A Wavelet Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 419-433, August.
    18. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    19. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    20. Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
    21. Gallegati, Marco & Giri, Federico & Palestrini, Antonio, 2019. "DSGE model with financial frictions over subsets of business cycle frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 152-163.
    22. Richard Ashley & Randal Verbrugge, 2009. "Frequency Dependence in Regression Model Coefficients: An Alternative Approach for Modeling Nonlinear Dynamic Relationships in Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 4-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roedl, Marianne & Dupont, Genevieve, 2020. "Monetary policy implications of the COVID-19 outbreak, the social pandemic," MPRA Paper 99981, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel M. F. Martins & Fabio Verona, 2021. "Inflation Dynamics and Forecast: Frequency Matters," CEF.UP Working Papers 2101, Universidade do Porto, Faculdade de Economia do Porto.
    2. Luís Aguiar-Conraria & Manuel M. F. Martins & Maria Joana Soares, 2019. "The Phillips Curve at 60: time for time and frequency," NIPE Working Papers 04/2019, NIPE - Universidade do Minho.
    3. Gonçalo Faria & Fabio Verona, 2021. "Time-frequency forecast of the equity premium," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
    4. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    5. Faria, Gonçalo & Verona, Fabio, 2020. "The yield curve and the stock market: Mind the long run," Journal of Financial Markets, Elsevier, vol. 50(C).
    6. Lubik, Thomas A. & Matthes, Christian & Verona, Fabio, 2019. "Assessing U.S. aggregate fluctuations across time and frequencies," Research Discussion Papers 5/2019, Bank of Finland.
    7. Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2017. "A Model of the Fed’s View on Inflation," Economic Research Papers 269087, University of Warwick - Department of Economics.
    8. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    9. Faria, Gonçalo & Verona, Fabio, 2018. "The equity risk premium and the low frequency of the term spread," Research Discussion Papers 7/2018, Bank of Finland.
    10. Marco Del Negro & Michele Lenza & Giorgio E. Primiceri & Andrea Tambalotti, 2020. "What’s up with the Phillips Curve?," NBER Working Papers 27003, National Bureau of Economic Research, Inc.
    11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    12. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    13. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    14. Olivier Coibion & Yuriy Gorodnichenko & Michael Weber, 2022. "Monetary Policy Communications and Their Effects on Household Inflation Expectations," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1537-1584.
    15. Kilponen, Juha & Verona, Fabio, 2016. "Testing the Q theory of investment in the frequency domain," Research Discussion Papers 32/2016, Bank of Finland.
    16. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland.
    17. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    18. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    19. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    20. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bof:bofrdp:2020_004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Minna Nyman (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.