IDEAS home Printed from https://ideas.repec.org/p/bof/bofitp/2011_035.html
   My bibliography  Save this paper

Tracking Chinese CPI inflation in real time

Author

Listed:
  • Funke, Michael
  • Mehrotra, Aaron
  • Yu, Hao

Abstract

With recovery from the global financial crisis in 2009 and 2010, inflation emerged as a major concern for many central banks in emerging Asia. We use data observed at mixed frequencies to estimate the movement of Chinese headline inflation within the framework of a state-space model, and then take the estimated indicator to nowcast Chinese CPI inflation. The importance of forward-looking and high-frequency variables in tracking inflation dynamics is highlighted and the policy implications discussed. Keywords: Nowcasting, CPI inflation cycle, mixed-frequency modelling, dynamic factor model, China. JEL classification: C53, E31, E37

Suggested Citation

  • Funke, Michael & Mehrotra, Aaron & Yu, Hao, 2011. "Tracking Chinese CPI inflation in real time," BOFIT Discussion Papers 35/2011, Bank of Finland, Institute for Economies in Transition.
  • Handle: RePEc:bof:bofitp:2011_035
    as

    Download full text from publisher

    File URL: https://helda.helsinki.fi/bof/bitstream/123456789/8231/1/169819.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    2. Estrella, Arturo & Mishkin, Frederic S., 1997. "Is there a role for monetary aggregates in the conduct of monetary policy?," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 279-304, October.
    3. Modugno, Michele, 2013. "Now-casting inflation using high frequency data," International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
    4. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    5. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    6. Aksoy, Yunus & Piskorski, Tomasz, 2006. "U.S. domestic money, inflation and output," Journal of Monetary Economics, Elsevier, vol. 53(2), pages 183-197, March.
    7. Claudio Borio, 2011. "Central banking post-crisis: What compass for uncharted waters?," BIS Working Papers 353, Bank for International Settlements.
    8. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    9. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    10. Svensson, Lars E. O., 1997. "Inflation forecast targeting: Implementing and monitoring inflation targets," European Economic Review, Elsevier, vol. 41(6), pages 1111-1146, June.
    11. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
    12. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    14. Guonan Ma & Yan Xiandong & Liu Xi, 2013. "China’s evolving reserve requirements," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 11(2), pages 117-137, May.
    15. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    16. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    17. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    18. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
    19. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    20. International Monetary Fund, 2009. "What Drives China’s Interbank Market?," IMF Working Papers 09/189, International Monetary Fund.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Andrew Filardo & Hans Genberg, 2010. "Targeting inflation in Asia and the Pacific: lessons from the recent past," BIS Papers chapters,in: Bank for International Settlements (ed.), The international financial crisis and policy challenges in Asia and the Pacific, volume 52, pages 251-273 Bank for International Settlements.
    23. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    24. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    25. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghong Tan, 2014. "The Transition of Farmland Production Functions in Metropolitan Areas in China," Sustainability, MDPI, Open Access Journal, vol. 6(7), pages 1-14, June.
    2. Bolan Liu & Xiaowei Ai & Pan Liu & Chuang Zhang & Xingqi Hu & Tianpu Dong, 2015. "Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration," Energies, MDPI, Open Access Journal, vol. 8(9), pages 1-14, September.
    3. Chronis, George A., 2016. "Modelling the extreme variability of the US Consumer Price Index inflation with a stable non-symmetric distribution," Economic Modelling, Elsevier, vol. 59(C), pages 271-277.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bof:bofitp:2011_035. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Minna Nyman) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/bofitfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.