IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Multivariate Fractionally Integrated APARCH Modeling of Stock Market Volatility: A multi-country study

  • Christian Conrad

    ()

    (University of Heidelberg, Department of Economics)

  • Menelaos Karanasos

    ()

    (Brunel University, Dept. of Economics and Finance)

  • Ning Zeng

    (Brunel University, Dept. of Economics and Finance)

Tse (1998) proposes a model which combines the fractionally integrated GARCH formulation of Baillie, Bollerslev and Mikkelsen (1996) with the asymmetric power ARCH speci¯cation of Ding, Granger and Engle (1993). This paper analyzes the applicability of a multivariate constant conditional correlation version of the model to national stock market returns for eight countries. We ¯nd this multivariate speci¯cation to be generally applicable once power, leverage and long-memory e®ects are taken into consideration. In addition, we ¯nd that both the optimal fractional di®erencing parameter and power transformation are remarkably similar across countries. Out-of-sample evidence for the superior forecasting ability of the multivariate FIAPARCH framework is provided in terms of forecast error statistics and tests for equal forecast accuracy of the various models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.uni-heidelberg.de/md/awi/forschung/dp472.pdf
Download Restriction: no

Paper provided by University of Heidelberg, Department of Economics in its series Working Papers with number 0472.

as
in new window

Length: 31 pages
Date of creation: Jul 2008
Date of revision: Jul 2008
Handle: RePEc:awi:wpaper:0472
Contact details of provider: Postal: Grabengasse 14, D-69117 Heidelberg
Phone: +49-6221-54 2905
Fax: +49-6221-54 2914
Web page: http://www.awi.uni-heidelberg.de/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  2. Neil R. Ericsson, 1991. "Parameter constancy, mean square forecast errors, and measuring forecast performance: an exposition, extensions, and illustration," International Finance Discussion Papers 412, Board of Governors of the Federal Reserve System (U.S.).
  3. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  4. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  5. Menelaos Karanasos & Stefanie Schurer, 2008. "Is the Relationship between Inflation and Its Uncertainty Linear?," German Economic Review, Verein für Socialpolitik, vol. 9, pages 265-286, 08.
  6. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
  7. Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
  8. Beine, Michel & Benassy-Quere, Agnes & Lecourt, Christelle, 2002. "Central bank intervention and foreign exchange rates: new evidence from FIGARCH estimations," Journal of International Money and Finance, Elsevier, vol. 21(1), pages 115-144, February.
  9. Kenneth D. West & Michael W. McCracken, 1998. "Regression-Based Tests of Predictive Ability," NBER Technical Working Papers 0226, National Bureau of Economic Research, Inc.
  10. Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute for the Study of Labor (IZA).
  11. Karanasos, Menelaos & Kim, Jinki, 2006. "A re-examination of the asymmetric power ARCH model," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 113-128, January.
  12. BAUWENS, Luc & LAURENT, Sébastien, . "A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models," CORE Discussion Papers RP -1793, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Christian Conrad & Michael J. Lamla, 2007. "The High-Frequency Response of the EUR-US Dollar Exchange Rate to ECB Monetary Policy Announcements," KOF Working papers 07-174, KOF Swiss Economic Institute, ETH Zurich.
  14. Menelaos Karanasos & Zacharias Psaradakis & Martin Sola, 2004. "On the Autocorrelation Properties of Long-Memory GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 265-282, 03.
  15. Timotheos Angelidis & Stavros Degiannakis, 2008. "Forecasting one-day-ahead VaR and intra-day realized volatility in the Athens Stock Exchange Market," Managerial Finance, Emerald Group Publishing, vol. 34(7), pages 489-497.
  16. G. William Schwert, 1990. "Stock Volatility and the Crash of '87," NBER Working Papers 2954, National Bureau of Economic Research, Inc.
  17. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  18. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
  19. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
  20. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  21. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
  22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  23. Allan Timmermann & M. Hashem Pesaran, 2002. "Market Timing and Return Prediction under Model Instability," FMG Discussion Papers dp412, Financial Markets Group.
  24. Bent Jesper Christensen & Jie Zhu & Morten Ørregaard Nielsen, 2009. "Long memory in stock market volatility and the volatility-in-mean effect: the FIEGARCH-M model," Working Papers 1207, Queen's University, Department of Economics.
  25. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP -1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  26. Karanasos, M. & Kartsaklas, A., 2009. "Dual long-memory, structural breaks and the link between turnover and the range-based volatility," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 838-851, December.
  27. Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Multivariate GARCH models," CREATES Research Papers 2008-06, School of Economics and Management, University of Aarhus.
  28. Campos, Nauro F & Karanasos, Menelaos, 2007. "Growth, Volatility and Political Instability: Non-Linear Time-Series Evidence for Argentina, 1896-2000," CEPR Discussion Papers 6524, C.E.P.R. Discussion Papers.
  29. Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
  30. GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," CORE Discussion Papers 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  31. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(03), pages 838-862, June.
  32. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  33. Conrad, Christian, 2010. "Non-negativity conditions for the hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
  34. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  35. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
  36. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  37. Elliott, Graham & Timmermann, Allan G, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
  38. Christian Conrad & Michael J. Lamla, 2010. "The High-Frequency Response of the EUR-USD Exchange Rate to ECB Communication," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(7), pages 1391-1417, October.
  39. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  40. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  41. Fabio Fornari & Antonio Mele, 2001. "Recovering the Probability Density Function of Asset Prices Using GARCH as Diffusion Approximations," Temi di discussione (Economic working papers) 396, Bank of Italy, Economic Research and International Relations Area.
  42. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
  43. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  44. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  45. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  46. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  47. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  48. Karanasos, M. & Sekioua, S.H. & Zeng, N., 2006. "On the order of integration of monthly US ex-ante and ex-post real interest rates: New evidence from over a century of data," Economics Letters, Elsevier, vol. 90(2), pages 163-169, February.
  49. Conrad, Christian & Karanasos, Menelaos, 2006. "The impulse response function of the long memory GARCH process," Economics Letters, Elsevier, vol. 90(1), pages 34-41, January.
  50. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  51. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  52. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  53. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  54. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  55. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
  56. Bai, Jushan & Chen, Zhihong, 2008. "Testing multivariate distributions in GARCH models," Journal of Econometrics, Elsevier, vol. 143(1), pages 19-36, March.
  57. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-58, February.
  58. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 413-449.
  59. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
  60. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  61. Schoffer, Olaf, 2003. "HY-A-PARCH: A stationary A-PARCH model with long memory," Technical Reports 2003,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  62. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:awi:wpaper:0472. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabi Rauscher)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.