IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Demand and price volatility: rational habits in international gasoline demand

  • Scott, K. Rebecca


    (University of California, Berkeley. Dept of agricultural and resource economics)

The combination of habits and a forward outlook suggests that consumers will be sensitive not just to prices but to price dynamics. In particular, rational habits models suggest 1. that price volatility and uncertainty will reduce demand for a habit-forming good and 2. that such volatility will dampen demand?s responsiveness to price. These two implications can be tested by augmenting a traditional partial-adjustment or error-correction model of demand. I apply this augmented model to data on gasoline consumption, as rational habits provide a succinct representation for the investment and behavioral decisions that determine gasoline usage. The trade-o¤s among 2SLS, system GMM, and pooled mean group (PMG) estimators are considered, and my preferred PMG estimator provides evidence for the two implications of rational habits in a panel of 29 countries for the years 1990-2009. The sensitivity of certain results to the choice of estimator o¤ers a cautionary illustration of the cost of assumptions such as coe¢ cient heterogeneity. Given the evidence uncovered in favor of rational gasoline habits, such habits may help to explain some of the cross-country variation in "total" price elasticity. These habits also imply that the e¤ect of price volatility must be taken into account when projecting the impacts of potential policies on gasoline consumption.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of California at Berkeley, Department of Agricultural and Resource Economics and Policy in its series CUDARE Working Paper Series with number 1122.

in new window

Length: 70 pages
Date of creation: Jun 2011
Date of revision:
Handle: RePEc:are:cudare:1122
Contact details of provider: Postal: 207 Giannini Hall #3310, Berkeley, CA 94720-3310
Phone: (510) 642-3345
Fax: (510) 643-8911
Web page:

More information through EDIRC

Order Information: Postal: University of California, Giannini Foundation of Agricultural Economics Library, 248 Giannini Hall #3310, Berkeley CA 94720-3310

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Angelier, Jean Pierre & Sterner, Thomas, 1990. "Tax harmonization for petroleum products in the EC," Energy Policy, Elsevier, vol. 18(6), pages 500-505.
  2. Ramanathan, R., 1999. "Short- and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques," Energy Economics, Elsevier, vol. 21(4), pages 321-330, August.
  3. Richard Blundell & Steve Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
  4. Edward F. Blackburne III & Mark W. Frank, 2007. "XTPMG: Stata module for estimation of nonstationary heterogeneous panels," Statistical Software Components S456868, Boston College Department of Economics.
  5. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
  6. Pesaran, M.H. & Smith, R., 1992. "Estimating Long-Run Relationships From Dynamic Heterogeneous Panels," Cambridge Working Papers in Economics 9215, Faculty of Economics, University of Cambridge.
  7. R Blundell & Steven Bond, . "Initial conditions and moment restrictions in dynamic panel data model," Economics Papers W14&104., Economics Group, Nuffield College, University of Oxford.
  8. Mark Coppejans & Donna Gilleskie & Holger Sieg & Koleman Strumpf, 2007. "Consumer Demand under Price Uncertainty: Empirical Evidence from the Market for Cigarettes," The Review of Economics and Statistics, MIT Press, vol. 89(3), pages 510-521, August.
  9. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
  10. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
  11. Polemis, Michael L., 2006. "Empirical assessment of the determinants of road energy demand in Greece," Energy Economics, Elsevier, vol. 28(3), pages 385-403, May.
  12. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
  13. Chi-Young Choi & Nelson C. Mark & Donggyu Sul, 2010. "Bias Reduction in Dynamic Panel Data Models by Common Recursive Mean Adjustment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 567-599, October.
  14. Samimi, Rodney, 1995. "Road transport energy demand in Australia: A cointegration approach," Energy Economics, Elsevier, vol. 17(4), pages 329-339, October.
  15. Glauco De Vita & Klaus Endresen & Lester C Hunt, 2005. "An Empirical Analysis of Energy Demand in Namibia," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 110, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
  16. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
  17. Frank Kleibergen & Richard Paap, 2003. "Generalized Reduced Rank Tests using the Singular Value Decomposition," Tinbergen Institute Discussion Papers 03-003/4, Tinbergen Institute.
  18. Bentzen, Jan & Engsted, Tom, 2001. "A revival of the autoregressive distributed lag model in estimating energy demand relationships," Energy, Elsevier, vol. 26(1), pages 45-55.
  19. Kui-Yin Cheung & Elspeth Thomson, 2004. "The Demand for Gasoline in China: A Cointegration Analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(5), pages 533-544.
  20. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
  21. Zia Wadud & Daniel Graham & Robert Noland, 2009. "A cointegration analysis of gasoline demand in the United States," Applied Economics, Taylor & Francis Journals, vol. 41(26), pages 3327-3336.
  22. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
  23. Akinboade, Oludele A. & Ziramba, Emmanuel & Kumo, Wolassa L., 2008. "The demand for gasoline in South Africa: An empirical analysis using co-integration techniques," Energy Economics, Elsevier, vol. 30(6), pages 3222-3229, November.
  24. Westerlund, Joakim, 2005. "Testing for Error Correction in Panel Data," Working Papers 2005:11, Lund University, Department of Economics.
  25. Narayan, Paresh Kumar & Smyth, Russell, 2007. "A panel cointegration analysis of the demand for oil in the Middle East," Energy Policy, Elsevier, vol. 35(12), pages 6258-6265, December.
  26. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
  27. Damiaan Persyn & Joakim Westerlund, 2008. "Error-correction–based cointegration tests for panel data," Stata Journal, StataCorp LP, vol. 8(2), pages 232-241, June.
  28. Steve Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  29. Harris, R. & Tzavalis, E., 1996. "Inference for Unit Roots in Dynamic Panels," Discussion Papers 9604, Exeter University, Department of Economics.
  30. Peter Pedroni, 2004. "Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis," Department of Economics Working Papers 2004-15, Department of Economics, Williams College.
  31. Robert V. Breunig & Carol Gisz, 2009. "An Exploration of Australian Petrol Demand: Unobservable Habits, Irreversibility and Some Updated Estimates," The Economic Record, The Economic Society of Australia, vol. 85(268), pages 73-91, 03.
  32. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-95, November.
  33. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
  34. Rao, B. Bhaskara & Rao, Gyaneshwar, 2008. "Cointegration and the demand for gasoline," MPRA Paper 11396, University Library of Munich, Germany.
  35. Bentzen, Jan, 1994. "An empirical analysis of gasoline demand in Denmark using cointegration techniques," Energy Economics, Elsevier, vol. 16(2), pages 139-143, April.
  36. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
  37. Pasaran, M.H. & Im, K.S. & Shin, Y., 1995. "Testing for Unit Roots in Heterogeneous Panels," Cambridge Working Papers in Economics 9526, Faculty of Economics, University of Cambridge.
  38. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
  39. Gang Liu, 2004. "Estimating Energy Demand Elasticities for OECD Countries. A Dynamic Panel Data Approach," Discussion Papers 373, Statistics Norway, Research Department.
  40. Storchmann, Karl, 2005. "Long-Run Gasoline demand for passenger cars: the role of income distribution," Energy Economics, Elsevier, vol. 27(1), pages 25-58, January.
  41. Alves, Denisard C. O. & De Losso da Silveira Bueno, Rodrigo, 2003. "Short-run, long-run and cross elasticities of gasoline demand in Brazil," Energy Economics, Elsevier, vol. 25(2), pages 191-199, March.
  42. Phu Nguyen-Van, 2009. "Energy consumption and income : a semiparametric panel data analysis," Working Papers of BETA 2009-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  43. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
  44. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
  45. Eltony, M. N. & Al-Mutairi, N. H., 1995. "Demand for gasoline in Kuwait : An empirical analysis using cointegration techniques," Energy Economics, Elsevier, vol. 17(3), pages 249-253, July.
  46. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
  47. Edward F. Blackburne III & Mark W. Frank, 2007. "Estimation of nonstationary heterogeneous panels," Stata Journal, StataCorp LP, vol. 7(2), pages 197-208, June.
  48. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-52, Special I.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:are:cudare:1122. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jeff Cole)

The email address of this maintainer does not seem to be valid anymore. Please ask Jeff Cole to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.