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Abstract

The reaction coe¢ cients of expected in�ations and output gaps in the forecast-

based monetary policy reaction function may be merely weakly identi�ed when the

smoothing coe¢ cient is close to unity and the nominal interest rates are highly persis-

tent. In this paper we modify the method of Andrews and Cheng (2012, Econometrica)

on inference under weak / semi-strong identi�cation to accommodate the persistence

issue. Our modi�cation involves the employment of asymptotic theories for near unit

root processes and novel drifting sequence approaches. Large sample properties with

a desired smooth transition with respect to the true values of parameters are devel-

oped for the nonlinear least squares (NLS) estimator and its corresponding t / Wald

statistics of a general class of models.

Despite the not-consistent-estimability, the conservative con�dence sets of weakly-

identi�ed parameters of interest can be obtained by inverting the t / Wald tests. We

show that the null-imposed least-favorable con�dence sets will have correct asymptotic

sizes, and the projection-based method may lead to asymptotic over-coverage. Our

empirical application suggests that the NLS estimates for the reaction coe¢ cients

in U.S.�s forecast-based monetary policy reaction function for 1987:3�2007:4 are not

accurate su¢ ciently to rule out the possibility of indeterminacy.
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1 Introduction

Consider the monetary policy reaction function (MPRF , Clarida, Galí and Gertler, 2000):

it = �it�1 + (1� �) (�� + � _pEt _pt;k + �xEtxt;k) + "t; (1.1)

where the nominal interest rate it is modeled as a weighted average of nominal interest rate

in the previous period it�1 and the monetary authority�s target rate i�t . The target rate i
�
t

follows a forward-looking Taylor monetary policy rule (Taylor, 1993; Clarida et al., 2000):

i�t = �� + � _pEt _pt;k + �xEtxt;k;

where _pt;k and xt;k denote the annualized in�ation and the average output gap between peri-

ods t and t+k. Et (�) denotes the expectation of the monetary authority at time t. � 2 [0; 1)
is known as the smoothing coe¢ cient. f� _p; �xg are the reaction coe¢ cients. The model is
called the forecast-based MPRF when the real-time data, i.e., the historical ex ante fore-

casts (fEt _pt;k;Etxt;kg) are used. Throughout this paper, the region DR = f� _p > 1; �x > 0g
is called the determinacy region. When � _p > 1 and �x > 0, regardless of the values of other

unknown parameters, the MPRF su¢ ciently satis�es the determinacy condition, i.e., the

monetary authority adjusts the nominal interest rates with �su¢ cient strength�in response

to in�ations and output gaps (Woodford, 2003; Galí, 2008)1.

In this paper we are interested in the nonlinear least squares (NLS) estimation and

inference of the forecast-based MPRF when the smoothing coe¢ cient � is close to unity.

When � � 1, the NLS objective function is relatively �at with respect to � = f��; � _p; �xg
and � may not be consistently estimated. The inference about � based on the standard

asymptotic theory (Newey and McFadden, 1994) may also be spurious because of a twofold

reason. First, the Hessian of the NLS objective function is near singular when the objective

1According to Woodford (2003, Proposition 4.6), the determinacy condition of the MPRF is:

� _p +
1� �discount

�slope
�x � 1 > 0;

where �discount 2 (0; 1) and �slope > 0 are the discount factor and the slope parameter in the forward-looking
Phillips curve. The de�nitions for the determinacy region in this paper is the same as Mavroeidis (2010).

2



function is relatively �at, and the standard asymptotic approximations involve the inverse

of the Hessian. Second, when � � 1, the nominal interest rates fitg will be highly persistent,
and the NLS estimator will have a nonstandard asymptotic distribution. Lately close-to-one

estimates for � had been found by Bunzel and Enders (2010), Nikolsko-Rzhevskyy (2011)

and Nikolsko-Rzhevskyy and Papell (2012), but the identi�cation failure of the reaction

coe¢ cients f� _p; �xg when � � 1 has not been well studied. To the best of our knowledge,

the identi�cation failure of theMPRF when � � 1 has only been noticed by Urquiza (2010)
and Guerron-Quintana et al. (2009). Neither of them established the large sample properties

of the estimators.

Three main contributions of this paper are as follows. First, our paper is the �rst in the

literature establishing the large sample properties of the estimator / tests for the forecast-

based MPRF with a close-to-unity smoothing coe¢ cient �. In this paper we modify the

method of Andrews and Cheng (2012) on inference under weak / semi-strong identi�cation to

accommodate the persistence issue. Our modi�cation involves the employment of asymptotic

theories for near unit root processes (Phillips, 1987; Giraitis and Phillips, 2006) and novel

drifting sequence approaches, which match the nonstandard convergence / divergence rates

of the NLS estimator in the extreme case when � = 1. Large sample properties with a

desired smooth transition with respect to the true values of parameters are developed for

the NLS estimator and its corresponding t / Wald statistics of a general class of models.

Second, despite the not-consistent-estimability, the conservative con�dence sets (CS) of

weakly-identi�ed parameters of interest (� = f��; � _p; �xg) can be obtained by inverting the
t / Wald tests. We show that the null-imposed least-favorable CS (NILF , Andrews and

Cheng, 2012) will have correct asymptotic sizes, and the projection-based method (Dufour,

1997) may lead to asymptotic over-coverage.

Third, we obtain the conservative CS of the reaction coe¢ cients f� _p; �xg in U.S.�s
forecast-based MPRF for 1987:3�2007:4 with con�dence coe¢ cients 1 � � = 0:8, 0:9 and

0:95. The obtained CS contain many values of f� _p; �xg not in the determinacy region
DR = f� _p > 1; �x > 0g. Our empirical application suggests that the NLS estimates for
f� _p; �xg are not accurate su¢ ciently to rule out the possibility of indeterminacy.

In the last decade there have been concerns over the identi�ability of the monetary policy

reaction function (e.g., Cochrane, 2011; Inoue and Rossi, 2011; Mavroeidis, 2004, 2010).

However, many were focus on the issue of weak instruments (weak IV ). In a seminal paper

Clarida, Galí and Gertler (2000) estimated the monetary policy reaction function of U.S.
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for the pre-Volcker (1960:1 �1979:2) / Volcker-Greenspan period (1979:3 �1996:4)2. Since

the expectations of the in�ation and the output gap of the Federal Reserve (fEt _pt;k;Etxt;kg)
were unobservable to the public, Clarida et al. (2000) replaced the ex ante expectations by

the observable ex post realizations (f _pt;k; xt;kg).

it = �it�1 + (1� �) (�� + � _p _pt;k + �xxt;k) + "�t ;
"�t = "t � (1� �) [� _p ( _pt;k � Et _pt;k) + �x (xt;k � Etxt;k)] :

Because f _pt;k; xt;kg would be correlated with "�t (when � 6= 1 and � _p 6= 0 / �x 6= 0), Clarida et
al. (2000) used the lags of fit; _pt;k; xt;kg as IV and estimated the MPRF by the generalized
method of moments (GMM , Hansen, 1982). Their estimates for the reaction coe¢ cients

f� _p; �xg for the pre-Volcker / Volcker-Greenspan period were respectively not in / in the
determinacy region DR = f� _p > 1; �x > 0g3. However, many empirical studies (e.g., Inoue
and Rossi, 2011; Mavroeidis, 2004, 2010) suggested that the lags of fit; _pt;k; xt;kg were merely
weakly correlated to f _pt;k; xt;kg. Recently Inoue and Rossi (2011) and Mavroeidis (2010) re-
examined the empirical �ndings of Clarida et al. (2000). Inoue and Rossi (2011) developed a

novel technique to test the strong identi�cation of GMM estimation and rejected the null hy-

pothesis of the strong identi�cation of f� _p; �xg for the Volcker-Greenspan period. Mavroeidis
(2010) obtained the con�dence set robust to weak IV and found the 90% robust con�dence

set of f� _p; �xg for the Volcker-Greenspan period contains many values of parameters not in
DR = f� _p > 1; �x > 0g. Their �ndings suggested that the GMM estimates of f� _p; �xg for
the Volcker-Greenspan period were not accurate su¢ ciently to conclude the determinacy.

To prevent the identi�cation failure due to weak IV , as in Orphanides (2001, 2004), we

use the real-time data, i.e., the historical ex ante forecasts of in�ations and output gaps

(fEt _pt;k;Etxt;kg) of the Federal Reserve. Orphanides (2004) collected the historical real-time
data and estimated U.S.�s forecast-basedMPRF for the Volcker-Greenspan period (1979:3�

1995:4) by NLS without any IV . His estimates for the reaction coe¢ cients f� _p; �xg were
in the determinacy region4. Since 2008, the Greenbook projections of many macroeconomic

variables have been open to the public (after a �ve-year declassi�cation period) in the Federal

2The pre-Volcker period is the tenures of W. M. Martin, A. Burns and G. W. Miller as Federal Reserve
chairmen. The Volcker-Greenspan period is the terms of P. Volcker and A. Greenspan.

3Instead of only one lag, Clarida et al. (2000) considered two lags of interest rates. Their estimates
of f� _p; �xg for the pre-Volcker / Volcker-Greenspan period (k = 1) were respectively f0:83; 0:27g and
f2:15; 0:93g.

4Orphanides (2004) collected the historical forecasts from the Greenbooks of Federal Reserve, the Council
of Economic Advisers, the Department of Commerce and the internal Federal Reserve sta¤ estimates. The
estimates of Orphanides (2004) of f� _p; �xg for the Volcker-Greenspan period (k = 1; 2; 3; 4) were respectively
around 1:89 �2:12 and 0:14 �0:18.
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Reserve Bank of Philadelphia5. For details about the real-time data, see Croushore and Stark

(2001).

Lately close-to-unity estimates for the smoothing coe¢ cient � had been found empirically,

especially when more recent data was used. For example, Bunzel and Enders (2010) and

Nikolsko-Rzhevskyy (2011) estimated the forecast-based MPRF of U.S. with data up to

2007. Many of their estimates for � were around 0:88 � 0:986. Nikolsko-Rzhevskyy and

Papell (2012) also found estimates for � around 0:88 �0:94 for the sample period 1966:1 �

1979:2 when using the Hodrick-Prescott (1997) �lter in computing output gaps7. However,

to the best of our knowledge, the identi�cation failure of � when � � 1 had only been noticed
by Urquiza (2010) and Guerron-Quintana et al. (2009). Urquiza (2010) found that when

� approaches one, the zero-information-limit condition (ZILC, Nelson and Startz, 2007) is

satis�ed and the asymptotic variance of the NLS estimator of � become in�nite. His Monte-

Carlo simulations further showed that when the sample size is realistically small (n = 100),

even if � is fairly below one (e.g., � = 0:8), the inference for � based on the standard normal /

�2 distribution is still spurious. Guerron-Quintana et al. (2009) suggested to reparameterize

(1� �)� to prevent the identi�cation failure of �. Neither of them established the asymptotic
properties of the estimators.

In this paper we modify the method of Andrews and Cheng (2012) on weak / semi-

strong identi�cation. In their seminal paper, Andrews and Cheng (2012) provided a uni�ed

treatment for a general class of models in which the parameters of interest are f�; �; �g. �
and � are always identi�ed and can be

p
n-consistently estimated regardless of the value of

�. � is identi�ed if and only if � 6= 0 and the estimator for � may weakly converge to a

nondegenerate random variable when � � 0. The problem considered in this paper looks

similar to Andrews and Cheng (2012) if we reparameterize � = 1 � � in the MPRF , and
consider the following data generating process (DGP ):

yt = �yt�1 + (1� �)X>
t � + "t (1.2)

= (1� �) yt�1 + �X>
t � + "t; t = 1; : : : ; n:

Like Andrews and Cheng (2012), � can be identi�ed if and only if � = 1� � 6= 0. However,
5http://www.philadelphiafed.org/research-and-data/real-time-center/
6Bunzel and Enders (2010) estimated the MPRF with Taylor (1993)�s original backward looking rule for

di¤erent subsample periods in 1965:3 �2007:3. Most their estimates for � were in 0:894 � 0:974. Nikolsko-
Rzhevskyy (2011) estimated the forecast-based MPRF using Greenbook projections. For di¤erent forecast
horizons (k) in 1982:1 �2007:1, his estimates for � when k = 0 or 1 were respectively 0:91 and 0:88.

7Nikolsko-Rzhevskyy and Papell (2012) considered di¤erent forecast horizons (k = 1 or 4) in 1966:1 �
1979:2 (with p = 1).
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when Equation (1.2) contains a close-to-zero � (close-to-one �), fytg will be highly persistent,
and the NLS estimator for � will be super-consistent with a convergence rate n, and the

NLS estimator for � will not possess limiting distributions but actually diverge as n ! 1
with a divergence rate

p
n. Due to the di¤erent convergence rates of the estimators, the

problem considered in this paper, despite the similarity, does not belong to the class of

models considered by Andrews and Cheng (2012, 2013a, 2013b).

Two modi�cations were made to the existing method of Andrews and Cheng (2012).

First, we propose novel and simple drifting sequence approaches in approximating the �nite-

sample behaviors of the NLS estimator. To study the weakly-identi�ed �, Andrew and

Cheng (2012) approximated the true value of � as a sequence drifting to zero with a stan-

dardization factor
p
n, which matched the convergence rate of the estimator for � in their

models when � = 0. In this paper, however, to accommodate the persistence of fitg when
� � 0, drifting sequences di¤erent from Andrews and Cheng (2012) are selected to match the
nonstandard convergence / divergence rates of NLS estimators when � = 0. Speci�cally, two

di¤erent scenarios are considered. In the �rst scenario, �local-to-zero ��, � = �n drifts to zero

with a standardization factor n�1, and � = �n drifts to �1 with a standardization factor

n1=2. And the second scenario �distant-from-zero ��bridges the �local-to-zero ��scenario and

the case when � is �xed and strictly above zero. As in Stock (1991), the drifting sequences in

this paper are assumed to be simple linear functions of the unknown localization parameters.

Divergent drifting sequences for parameter values have never appeared in the literature and

may seem not intuitive. However, rather than any arbitrary arti�cial choice, the drifting-to-

in�nity sequences are logical outcomes of the nonstandard convergence / divergence rates in

the NLS estimation when � = 0. Intuitively, the drifting-to-in�nity �n assumption is made

simultaneously with the drifting-to-zero �n assumption. We made this assumption to ensure

the desired smooth transition in the asymptotic approximation to mimic the �nite-sample

behavior (Anatolyev and Gospodinov, 2011).

Second, by virtue of the linearity of drifting sequences, we are able to employ the asymp-

totic theories for near unit root processes (Phillips, 1987; Stock, 1991; Giraitis and Phillips,

2006) to establish the large sample properties with a desired smooth transition with respect

to the true values of f�; �g for the NLS estimator and its corresponding t / Wald test statis-
tics. Speci�cally, when � is distant from zero, the t / Wald statistics will be asymptotically

Gaussian / �2 distributed. However, when � is local to zero, the t / Wald statistics will

have nonstandard and non-pivotal asymptotic distributions. Our Monte Carlo simulation

shows that with the correctly speci�ed values of the unknown and not-consistently-estimable

localization parameters, our asymptotic approximations �t the �nite-sample densities very
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well. Despite the drifting to in�nity assumption for �, our asymptotic results provide good

approximations even when � is small in magnitude (e.g., � = 0). Our simulation also show

that when � is close to zero, the �nite-sample densities can not be approximated by ordinary

bootstrapping procedure (e.g. resampling). It is not surprising since when � is local to zero,

the asymptotic distributions will depend on the true values of the localization parameters.

The con�dence sets (CS) for any linear functions of parameters are obtained by inverting

the t / Wald tests. When � is local to zero, the CS will depend on the values of unknown

and not-consistently-estimable localization parameters. Accordingly, we consider the null-

imposed least-favorable method (NILF , Andrews and Cheng, 2012) and the projection-

based method (Dufour, 1997). The NILF method takes the supremum of the critical values

of tests with respect to all possible values of the localization parameters under the null

hypothesis corresponding to the tests to be inverted. The projection-based method projects

theCS for all parameters to the codomain of the function of interest. Though both theNILF

method and the projection-based method are conservative, we show that the NILF CS will

have correct asymptotic sizes and the projection-based method may lead to asymptotic over-

coverage. However, the projection-based method uses the information from the estimates for

all parameters of interest, and is possible to obtain a more informative CS compared to the

NILF CS under certain circumstances. Both the NILF method and the projection-based

method require the computation of the test statistics for possible values of parameters. In

practice, the CS can be obtained by grid methods.

According to our asymptotic theory, we construct the conservative CS for the reaction

coe¢ cients f� _p; �xg in U.S.�s forecast-based MPRF for 1987:3�2007:4. In the NLS estima-
tion we use the Greenbook projections, i.e., the real-time data for expected in�ations and

the expected output gaps (fEt _pt;k;Etxt;kg) from the Federal Reserve Bank of Philadelphia.

As in Nikolsko-Rzhevskyy (2011), we consider the case with k = 0 or 1. For con�dence

coe¢ cients 1� � = 0:8, 0:9 and 0:95, both the NILF and the projection-based CS contain
many values not in the determinacy region DR = f� _p > 1; �x > 0g. Our empirical results
show that the NLS estimates for the reaction coe¢ cients are not accurate su¢ ciently to

rule out the possibility of indeterminacy.

The remainder of the paper is organized as follows. Section 2 provides the asymptotic

theory for theNLS estimator when � � 0. Section 3 establishes the limiting properties of the
t / Wald test statistics and introduces the procedure to obtain the CS for linear functions of

parameters of interest. Section 4 gives the empirical results for U.S.�s forecast-basedMPRF

for 1987:3�2007:4. Section 5 concludes. Proofs of the main results are collected in Appendix.
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2 Assumptions and Asymptotic Theory

Consider the following data generating process (DGP ) as Equation (1.2):

yt = �nyt�1 + (1� �n)X>
t �n + "t

= (1� �n) yt�1 + �nX>
t �n + "t; t = 1; : : : ; n:

The DGP is known as the forecast-based monetary policy reaction function (forecast-based

MPRF ) when fytg denotes the nominal interest rate and fXtg represents the expected
in�ation (Et _pt;k), the expected output gap (Etxt;k) and a constant one as in equation (1.1).
We reparameterize �n = 1 � �n so the notations are consistent with Andrews and Cheng
(2012).

Assumption 1 (Data generating process) yt = (1� �n) yt�1+�nX>
t �n+"t for t = 1; : : : ; n,

where �n = f�n; �ng denote the true values of the parameters when the sample size equal to
n 2 N. �n 2 ��n � (0; 1]� Rd� .

Assumption 2 fXtg is a d�-dimensional stationary ergodic sequence with E (Xt) = �X 2
Rd� and E

��X2
t;l

��2 < 1 for all l = 1; : : : ; d� and t = 1; : : : ; n, where Xt;l denotes the l-th

element of Xt. MX = E
�
XtX

>
t

�
2 Rd��d� is positive de�nite. �X = var (Xt) = MX �

�X�
>
X .

Assumption 3 f"tg is a sequence of independent and identically distributed (i:i:d:) random
variables independent of fyt�1; Xtg with E ("t) = 0, E j"tj2 <1 and var ("t) = �2" > 0 for all

t = 1; : : : ; T .

f"tg is assumed to be serially uncorrelated because if f"tg is also persistent, then in
general Cov (yt�1; "t) 6= 0, i.e., yt�1 will be endogenous. In that case when �n is strictly

greater than zero, the parameters of interest can not be consistently estimated by nonlinear

least squares. We further assume f"tg to be i:i:d: for simplicity.

For notational simplicity, let '0 = f�X ;MX ; �
2
"g denote the nuisance parameters, where '0 2

�0 � Rd� � Rd��d� � (0;1). Also let n = f�n; '0g 2 �n = ��n � �0 denote all the para-
meters in the model, including the parameters of interest �n = f�n; �ng and the nuisance
parameters '0 = f�X ;MX ; �

2
"g.

In this section we establish the asymptotic properties of the nonlinear least squares (NLS)

estimator. �n = f�n; �ng belongs to the �true parameter space���n. For any �optimization
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parameter space��n � Rd�+1 containing ��n (i.e., ��n � �n), the NLS estimator b�n =nb�n; b�no is de�ned as the minimizer of the objective function Qn (�; n).
Qn

�b�n; n� = min
�2�n

Qn (�; n) = min
�2�n

1

2n

nX
t=1

�
yt � (1� �) yt�1 � �X>

t �
�2
: (2.1)

In practice, the optimization parameter space �n can be selected as a large set to prevent

the misspeci�cation of the parameter space.

When �n = �0 and �n = �0, i.e., when �n is �xed at the constant vector �0 = f�0; �0g 2
��n, by the standard asymptotic theory (Newey and McFadden, 1994), b�n is pn-consistent
and asymptotically normally distributed.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold and �n = �0 2 ��n, i.e., �n = �0 and
�n = �0 for any n 2 N. Then b�n p! �n, and

p
n
�b�n � �n� A� N

�
0(d�+1)�1; �

2
"V�10 (n)

�
;

where V0 (n) is the probability limit of the Hessian of the NLS objective function,

V0 (n) = plim
n!1

1

n

nX
t=1

" �
yt�1 �X>

t �0
�2 ��0

�
yt�1 �X>

t �0
�
X>
t

��0Xt

�
yt�1 �X>

t �0
�

�20XtX
>
t

#
:

However, when � = 0, the NLS objective function Qn (�; n) does not depend on � and

therefore � is not identi�able. And when � � 0, the NLS objective function is relatively �at
with respect to � and therefore � may not be consistently estimated. The inference about

� based on the standard asymptotic results (Theorem 1) may also be spurious because of a

twofold reason. First, the Hessian of theNLS objective function V0 (n) is near singular when
the objective function is relatively �at, and the standard asymptotic approximations involve

the inverse of the Hessian V0 (n). Second, when � � 0, the sequence fytg will be highly
persistent, and the NLS estimator b�n will have a nonstandard asymptotic distribution.
To study the case when � � 0, �rst we consider the extreme case when �n = 0. For

simplicity, we assume y0 = op
�
n1=2

�
to prevent the the e¤ect from the initial observation.

This assumption is similar to the conditional case assumption in the unit root literature

(Elliott et al, 1996).
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Lemma 1 Suppose that Assumptions 1, 2 and 3 hold except that �n is assumed to be 0 for
any n 2 N. If y0 = op

�
n1=2

�
, then b�n = Op (n�1), and b�n = Op �n1=2�.

In Lemma 1 we show that when �n = 0, b�n will be super-consistent with a convergence
rate n, and b�n does not possess limiting distribution but actually diverge as n ! 1 with

a divergence rate
p
n. Accordingly, in this paper we consider the following two di¤erent

asymptotic approaches, �n (1; b; c) and �n (h; b; c), to mimic the �nite sample behaviors ofb�n = nb�n; b�no. Through out this paper, the two classes �n (1; b; c) and �n (h; b; c) are called
the �local-to-zero �n�and �distant-from-zero �n�scenarios.

De�nition 1 (�n (1; b; c) and �n (h; b; c)) For any b 2 (0;+1), c 2Rd� and h 2 (0; 1),

�n (1; b; c) =

�
fng 2 �n : �n =

b

n
; �n = n

1=2c

�
;

�n (h; b; c) =

�
fng 2 �n : �n =

b

nh
; �n = n

�1=2+hc

�
:

For n 2 �n (1; b; c), �n and �n are assumed to be sequences respectively drifting to

zero / �1 when n ! 1. The standardization factors n�1 and n1=2 are selected to match
the convergence / divergence rates of the NLS estimator when �n = 0 (Lemma 1). The

asymptotic approach �n (h; b; c) bridges the case f�n = �0 2 ��ng and the local-to-zero �n
class �n (1; b; c). The drifting sequences for �n are exactly the same as the frequently used

local-to-unity (Phillips, 1987; Stock, 1991) / neighborhood-of-unity (Giraitis and Phillips,

2006; Phillips andMagdalinos, 2007) asymptotic approaches if we reparameterize �n = 1��n.
Divergent drifting sequences, to the best of our knowledge, have never appeared in the

literature and may seem not intuitive. However, rather than any arbitrary arti�cial choice,

the drifting-to-in�nity sequences are logical outcomes of the convergence / divergence rates

of the NLS estimators when �n = 0. We will discuss the divergent drifting sequences in

more details in Subsection 2.3.

In the following two subsections we establish the asymptotic results under �n (1; b; c) and

�n (h; b; c). Our method is a modi�cation of Andrews and Cheng (2012) on weak / semi-

strong identi�cation. In their seminal paper, Andrews and Cheng (2012) provided a uni�ed

treatment of a general class of models in which the parameters of interest are f�; �; �g. �
and � are always identi�ed and can be

p
n-consistently estimated regardless of the value of

�. � is identi�ed if and only if � 6= 0 and the estimator for � may weakly converge to a

nondegenerate random variable when � � 0. Despite the similarity, in Lemma 1 we have

10



already shown that when �n = 0, b�n and b�n are respectively Op (n�1) / Op �n1=2�. Due
to the di¤erent convergence / divergence rates of the estimators, the problem considered in

this paper does not belong to the class of models considered by Andrews and Cheng (2012,

2013a, 2013b). Although di¤erent drifting sequences are used, we develop the asymptotic

properties of the NLS estimator and its corresponding t / Wald test statistics with quadratic

approximations for the objective function similar to Andrews and Cheng (2012).

In contrast to Andrew and Cheng (2012), who considered more general drifting sequences

(e.g., n1=2�n ! b), the drifting sequences in this paper are assumed to be simple linear

functions of the unknown localization parameters (�n = n�1b, �n = n1=2c, or �n = n�1b,

�n = n1=2c). The linear drifting sequences and the property of the exponential function

limn!1 (1� n�1b)n = exp (�b) allow us to employ the large sample theory for the time

series with a local-to-unity root by Phillips (1987) and Stock (1991) in the establishment

of the asymptotic approximations. When obtaining the con�dence sets for linear functions

of parameters by inverting the tests, as in Stock (1991), the linear drifting sequences also

guarantee a surjective mapping from the values of localization parameters to the null hy-

potheses corresponding to the tests to be inverted, which is very useful in constructing a

more informative but still conservative con�dence set.

2.1 Estimation Results for Local-to-Zero �n

In this subsection we determine the asymptotic distributions of the NLS estimator b�n =nb�n; b�no when n 2 �n (1; b; c), i.e., �n = n�1b and �n = n1=2c. When n 2 �n (1; b; c), as
in Andrews and Cheng (2012), we consider a quadratic approximation for Qn (�; �; n) in �

around � = 0.

Qn (�; �; n)�Qn (0; �; n) =
@

@�
Qn (0; �; n) � � +

1

2

@2

@�2
Qn (�

�; �; n) � �2; (2.2)

where 0 < �� < �,

@

@�
Qn (0; �; n) = n�1

nX
t=1

(yt � yt�1)
�
yt�1 �X>

t �
�
;

@2

@�2
Qn (�

�; �; n) = n�1
nX
t=1

�
yt�1 �X>

t �
�2
:

11



Since @2Qn (�; �; n)
�
@�2 does not depend on �, @2Qn (�

�; �; n)
�
@�2 = @2Qn (0; �; n)

�
@�2 .

Therefore, equation (2.2) can be written as:

Qn (�; �; n)�Qn (0; �; n) =
@

@�
Qn (0; �; n) � � +

1

2

@2

@�2
Qn (0; �; n) � �2: (2.3)

For any Rd� -valued �, when n!1, let

n�1=2� ) ��: (2.4)

Lemma 2 Suppose that Assumptions 1, 2 and 3 hold, n 2 �n (1; b; c), and y0 = op
�
n1=2

�
.

Then for any Rd�-valued � with n�1=2� ) �� as n!1,

@

@�
Qn (0; �; n) ) G (��; b; c;'0) ; and

n�1
@2

@�2
Qn (0; �; n) ) H (��; b; c;'0) ;

where G (��; b; c;'0) and H (��; b; c;'0) are de�ned in Lemma 5 in Appendix A.

According to equation (2.3) and Lemma 2, let q (��; ��; b; c;'0) be the asymptotic ap-

proximation of Qn (�; �; n)�Qn (0; �; n),

q (��; ��; b; c;'0) = G (��; b; c;'0) � �� +
1

2
H (��; b; c;'0) � �2�: (2.5)

For any given ��, let b�� (��; b; c;'0) be the in�mizer of q (��; ��; b; c; n):
q
�b�� (��; b; c;'0) ; ��; b; c;'0� = inf

��
q (��; ��; b; c;'0) ; (2.6)

and b�� (b; c;'0) be the in�mizer of q �b�� (��; b; c;'0) ; ��; b; c;'0�:
q
�b�� (b�� (b; c;'0) ; b; c;'0) ; b�� (b; c;'0) ; b; c;'0� (2.7)

= inf
��
q
�b�� (��; b; c;'0) ; ��; b; c;'0� :

12



Theorem 2 Suppose that Assumptions 1, 2 and 3 hold, n 2 �n (1; b; c), and y0 = op
�
n1=2

�
.

Then "
n
�b�n � �n�

n�1=2 (b�n � �n)
#
) b� (b; c;'0) =

" b�� (b�� (b; c;'0) ; b; c;'0)� bb�� (b; c;'0)� c
#
:

Remark 1 1. In Theorem 2 we show that when n 2 �n (1; b; c), b�n is super-consistent
with a convergence rate n, and b�n does not possess limiting distribution but actu-
ally diverge as n ! 1 with a divergence rate

p
n. The asymptotic distributions of

n
�b�n � �n� / n�1=2 (b�n � �n) are nonstandard and depend on the values of unknown

parameters, including nuisance parameters '0 = f�X ;MX ; �
2
"g and localization para-

meters fb; cg. In Section 3 we will show that when n 2 �n (1; b; c), the t / Wald test
statistics corresponding to the null hypothesis H0 : R�n = � and the con�dence sets of

R�n will still depend on the values of fb; cg. And it causes di¢ culties in testing H0
and obtaining the con�dence sets of R�n.

2. The problem considered in this paper is not in the class of models in Andrews and Cheng

(2012), and our drifting sequence approaches are di¤erent from theirs. However, our

quadratic approximation of the NLS objective function, which is only with respect to �

around � = 0, is similar to the corresponding weak-identi�cation scenario in Andrews

and Cheng (2012). Since � vanishes in Qn (�; �; n) when � = 0, Qn (0; �; n) does not

depend on the values of both � and �. Therefore, the NLS estimator b�n = nb�n; b�no is
also a minimizer for Qn (�; �; n)�Qn (0; �; n), which has the quadratic expansion as
in equation (2.3). Then the asymptotic properties of b�n = nb�n; b�no can be determined
with Lemma 2, which employs the asymptotic theories for near unit root processes by

Phillips (1987) and Stock (1991). Because of the persistence of fytg when � � 0, the
empirical process central limit theorems (e.g., Andrews, 1994) used by Andrews and

Cheng (2012) in their corresponding weak-identi�cation scenario can not be applied to

the problem in the present paper.

According to Theorem 2, the asymptotic distributions of n
�b�n � �n� / n�1=2 (b�n � �n)

depend on unknown nuisance parameters '0 = f�X ;MX ; �
2
"g. Let fb"tg be the residuals of

the NLS estimation, and b'n = nb�X;n;cMX;n; b�2no be the estimator for '0:
b�X;n = n�1

nX
t=1

Xt; cMX;n =
1

n

nX
t=1

XtX
>
t ; b�2n = n�1 nX

t=1

b"2t ; where (2.8)

b"t = yt �
�
1� b�n� yt�1 � b�nX>

t b�n; t = 1 : : : ; n:

13



Lemma 3 Suppose that all conditions of Theorem 2 are satis�ed. Then b'n p! '0.

Lemma 3 shows that '0 can be consistently estimated by b'n. Therefore, when the true
values of the localization parameters fb; cg are known, we are able to replace the unknown
nuisance parameters '0 with the estimates b'n, and obtain the asymptotic distributions
of n

�b�n � �n� / n�1=2 (b�n � �n) by Monte Carlo simulation. We omit the formal proof
since it directly follows by the continuous mapping theorem. Our Monte Carlo simulation in

Example 1 shows that our asymptotic approximations �t the �nite-sample densities very well.

Since the localization parameters fb; cg are unknown in practice, we propose to approximate
the �nite-sample behaviors of n

�b�n � �n� / n�1=2 (b�n � �n) by the grid method, i.e., to
generate grids over the parameter space ��n and to obtain the asymptotic approximations

for every grid. Due to the not-consistent-estimability of fb; cg, we are not able to determine
the �correct�grid. However, the asymptotic distributions for every grids can be used in the

construction of the con�dence sets with correct asymptotic sizes for speci�c linear functions

of parameters �n, which we will discuss in more details in section 3. In Example 1 we also

show that because the asymptotic distributions of n
�b�n � �n� / n�1=2 (b�n � �n) depend on

the true values of the localization parameters fb; cg, the bootstrapping procedures, e.g., the
simple resampling, will not provide valid approximations for the �nite-sample behaviors.

Example 1 Consider the following model as equation (2.9):

yt = (1� �n) yt�1 + �n (�0;n + �1;nxt) + "t; t = 1; : : : ; n; (2.9)

where xt
i:i:d:� N (0; 1), "t

i:i:d:� N (0; 1), �n = b /n , �0;n = n
1=2c0, �1;n = n1=2c1, and n = 100.

Using Theorem 2, Figures 1 and 2 provide the simulated �nite-sample and asymptotic

densities of n
�b�n � �n� and n�1=2 (b�1;n � �1;n) given the true values of fb; c0; c1g. We con-

sider �n 2 f0:02; 0:05; 0:1g and �0;n = �1;n = 2, i.e., b 2 f2; 5; 10g and c0 = c1 = 0:2.

We do not report the densities of b�0;n since the results are similar to b�1;n. The asymptotic
approximations based on Theorem 2 �t the �nite-sample densities very well. In contrast,

Figures 3 and 4 provide the simulated �nite-sample and bootstrapping (resampling) densities

of n
�b�n � �n� and n�1=2 (b�1;n � �1;n). The resampling densities do not �t the �nite-sample

densities.

For all results 50; 000 simulation repetitions are used. For the asymptotic densities,

we �rst generate 200 di¤erent sets of data to estimate the unknown nuisance parameters

'0 = f�X ;MX ; �
2
"g. And with each estimates b'n we generate the asymptotic approx-

imations with 250 repetitions. The Wiener process W" (r) and the Ornstein�Uhlenbeck

14



process J�b;" (r) in the asymptotic distributions are approximated by T�1=2
PbTrc

s=1 �s and

T�1=2
PbTrc

s=1 (1� b=T )
bTrc�s �s with T = 10; 000 and �t

i:i:d:� N (0; 1).

2.2 Estimation Results for Distant-from-Zero �n

In this subsection we determine the asymptotic distributions of the NLS estimator b�n =nb�n; b�no when n 2 �n (h; b; c), i.e., �n = n�hb and �n = n�1=2+hc, where h 2 (0; 1). When
n 2 �n (h; b; c), we consider a quadratic approximation for Qn (�; n) around �n as Newey
and McFadden (1994) and Andrews and Cheng (2012):

Qn (�; n)�Qn (�n; n) (2.10)

= D>
� Qn (�n; n) (� � �n) +

1

2
(� � �n)>D��>Qn (�n; n) (� � �n) +R (��; n) ;

in which �� is in between of �n and �,

D�Qn (�n; n) =

"
n�1

Pn
t=1

�
yt�1 �X>

t �0
�
"t

��nn�1
Pn

t=1Xt"t

#
;

D��>Qn (�n; n) =

"
n�1

Pn
t=1

�
yt�1 �X>

t �0
�2

�n�1
Pn

t=1Xt

�
�n
�
yt�1 �X>

t �0
�
+ "t

�
�2nn

�1Pn
t=1XtX

>
t

#
:

Let

B (h) =

"
nh=2 01�d�

0d��1 n�hId�

#
: (2.11)

Lemma 4 Suppose that Assumptions 1, 2 and 3 hold, n 2 �n (h; b; c) and  = f�; '0g 2
�n (h; b; c). Then

1. n1=2B�1 (h)D�Qn (�n; n)) G� (b;'0) � N
�
0(d�+1)�1; �

2
"Vh (b;'0)

�
, where

Vh (b;'0) =
"
(2b)�1 �2" 01�d�

0d��1 b2MX

#
:

2. B�1 (h)D��>Qn (�n; n)B
�1 (h)

p! Vh (b;'0).
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Theorem 3 Suppose that Assumptions 1, 2 and 3 hold and n 2 �n (h; b; c). Then

n1=2B (h)
�b�n � �n� = " n1=2+h=2

�b�n � �n�
n1=2�h (b�n � �n)

#
A� N

�
0(d�+1)�1; �

2
"V�1h (b;'0)

�
:

Remark 2 1. In Theorem 3 we show that when n 2 �n (h; b; c), b�n��n = Op �n�1=2�h=2�,
and b�n � �n = Op

�
n�1=2+h

�
. Despite the non-standard convergence / divergence

rates, the asymptotic distributions of n1=2+h=2
�b�n � �n� / n1=2�h (b�n � �n) are stan-

dard (Gaussian distributions). In the next section when we consider the tests for the

null hypothesis H0 : R�n = � and the con�dence sets of R�n, we will show that when

n 2 �n (h; b; c), the asymptotic distributions of the t / Wald test statistics correspond-
ing to H0 will also be standard (Gaussian / �2 distributions) and pivotal (not depending

on the values of fb; c; hg). This result will be very useful in testing H0 and obtaining
the con�dence sets of R�n.

2. Again, the problem considered in this paper is not in the class of models in Andrews and

Cheng (2012), and our drifting sequence approaches are di¤erent from theirs. How-

ever, our quadratic approximation of the NLS objective function is similar to the

corresponding semi-strong-identi�cation scenario in Andrews and Cheng (2012). The

asymptotic properties of b�n = nb�n; b�no are determined with Lemma 4, which employs
the asymptotic theory for near unit root processes by Giraitis and Phillips (2006), who

rescaled the statistics of interest to satisfy the central limit theorem. Andrews and

Cheng (2012) also rescaled their statistics of interest for exactly the same reason in

their semi-strong-identi�cation case.

2.3 Sequences Drifting to In�nity

When n 2 �n (1; b; c), or n 2 �n (h; b; c) with h > 1=2, to mimic the true value of � we

use sequences drifting to �1 (�n = n1=2c when n 2 �n (1; b; c), and �n = n�1=2+hc when
n 2 �n (h; b; c)), which, to the best of our knowledge, have never appeared before in the
literature.

We consider sequences drifting to in�nity for two reasons. First, rather than any arbitrary

arti�cial choice, the drifting-to-in�nity sequences are logical outcomes of the convergence /

divergence rates of the NLS estimators. Lemma 1 shows that when �n = 0, b�n will be
16



super-consistent with a convergence rate n, and b�n does not possess limiting distribution
but actually diverge as n!1 with a divergence rate

p
n. The class �n (1; b; c) (�n = n

�1b

and �n = n1=2c) matches the convergence / divergence rates. And the class �n (h; b; c)

(�n = n�hb and �n = n�1=2+hc) bridges the two cases (f�n = �0 2 ��ng and �n (1; b; c)).
Intuitively, the drifting-to-in�nity �n assumption is made simultaneously with the drifting-to-

zero �n assumption. We made this assumption to ensure the desired smooth transition in the

asymptotic approximation to mimic the �nite-sample behavior (Anatolyev and Gospodinov,

2011).

Second, Theorems 2 and 3 show the necessity of the drifting-to-in�nity assumption for

inference about �n. When �n is approximated by a local-to-zero sequence (�n = b /n), if we

consider a drifting sequence for �n with a standardization factor less than n1=2, e.g., if we

assume that �n is a non-zero constant vector, then by Theorem 2 with c! 0,

n�1=2b�n = n�1=2 (b�n � �n) + o (1)) b�� (b;0;'0) :
That is, n�1=2b�n A

= n�1=2 (b�n � �n), the asymptotic distribution of b�n does not depend on
the true value of �n, and we are not able to make inference about �n based on its estimateb�n. Similarly, when �n is approximated by a neighborhood-of-zero sequence (�n = b

�
nh

with h 2 (0; 1)), if we consider a drifting sequence for �n with a standardization factor less
than n�1=2+h, then again, by Theorem 3 with c! 0,

n1=2�hb�n = n1=2�h (b�n � �n) + o (1) A� N �0d��1; �2"b�2M�1
X

�
:

Again, n1=2�hb�n A
= n1=2�h (b�n � �n), the asymptotic distribution of b�n does not depend on

the true value of �n, and we are not able to make inference about �n based on its estimateb�n, either.
Although we reparameterize the true value of � as a sequence drifting to �1 as the

sample size n!1 when n 2 �n (1; b; c), or n 2 �n (h; b; c) with h > 1=2, the true value of
� should not be viewed as an in�nite number. �n is always �nite for any sample size n 2 N.
In practice, the true value of � does not need to be large in magnitude. In Example 2 we

show that even if � = 0, our asymptotic approximations based on Theorem 2 still �t the

�nite-sample densities very well.

Example 2 Again, consider the following model as equation (2.9):

yt = (1� �n) yt�1 + �n (�0;n + �1;nxt) + "t; t = 1; : : : ; n;
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where xt
i:i:d:� N (0; 1), "t

i:i:d:� N (0; 1), �n = b /n , �0;n = n
1=2c0, �1;n = n1=2c1, and n = 100.

Still, we consider �n 2 f0:02; 0:05; 0:1g, i.e., b 2 f2; 5; 10g. However, in this example we
consider the case when �0;n = �1;n = 0, i.e., c0 = c1 = 0.

Using Theorem 2, Figures 5 and 6 provide the simulated �nite-sample and asymptotic

densities of n
�b�n � �n� and n�1=2 (b�1;n � �1;n) given the true values of fb; c0; c1g. The

asymptotic approximations based on Theorem 2 �t the �nite-sample densities very well.

2.4 Drifting Sequence in Andrews and Cheng (2012)

We conclude this section by discussing the di¤erences between the asymptotic approaches in

this paper and Andrews and Cheng (2012). In the models considered by Andrews and Cheng

(2012), the parameters of interest are f�; �; �g, in which � and � are always identi�ed and
can be

p
n-consistently estimated regardless of the value of �, and � is identi�ed if and only

if � 6= 0 and the estimator for � may weakly converge to a nondegenerate random variable

when � � 0. To match the convergence rate they employed the drifting sequence n1=2�n ! b

in their weak-identi�cation scenario, and the sequence n1=2�n ! 1 in their semi-strong-

identi�cation case. However, for the problem considered in this paper, in Lemma 1 we have

already shown that when �n = 0, b�n��n and b�n are respectively Op (n�1) / Op �n1=2�. Due
to the di¤erence in the convergence rates of estimators, we consider �n (1; b; c), in which

n�n = b and n
�1=2�n = c to match the convergence / divergence rates, and use �n (h; b; c),

i.e., nh�n = b and n
1=2�h�n = c, to bridge f�n = �0 2 ��ng and �n (1; b; c). In Theorems 2

and 3 we have already shown the necessity of the drifting-to-in�nity assumption for inference

about �n.

The drifting sequences considered in Andrews and Cheng (2012) in their weak-identi�cation

scenario reduces to the case when n 2 �n (h; b; c) with h = 1=2, in which �n is a sequence
drifting to zero with a standardization factor n�1=2 (n1=2�n = b) and �n is a constant vector

(�n = c). We have already shown (in Theorem 3) that when n 2 �n (h; b; c), the NLS
estimator b�n is asymptotically Gaussian distributed when b 6= 0, and is unidenti�able when
b = 0 since Avar (b�n) = �2"b�2M�1

X !1 when b! 0. For the problem considered in this pa-

per, if one consider the drifting sequences of Andrews and Cheng (2012), the desired smooth

transition of the asymptotic approximation will be missing, due to the insu¢ cient standard-

ization factors not matching the convergence / divergence rates of the NLS estimator when

�n = 0.
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3 Con�dence Sets and Tests

In the section we establish the limiting properties of the t / Wald test statistics and introduce

the procedure to obtain the con�dence sets with correct asymptotic sizes for speci�c linear

functions of parameters of interest. Consider a linear null statistical hypothesis:

H0 : R�n = �; (3.1)

where R 2Rdr�(d�+1), � 2 Rdr where dr � d� + 1, and Rank (R) = dr.

3.1 t and Wald Test Statistics

Consider the t statistics Tn (�) (when dr = 1) and the Wald statistics Wn (v) corresponding

to the null (equation (3.1)):

Tn (�) =
n1=2

h
Rb�n � �ihb�2nRbV�1
n R

>
i1=2 ; (3.2)

Wn (v) = n
h
Rb�n � �i> hb�2nRbV�1

n R
>
i�1 h

Rb�n � �i ; (3.3)

where b�2n = n�1Pn
t=1b"2t is de�ned in equation (2.8), and

bVn = n
�1

nX
t=1

" �
yt�1 �X>

t b�n�2 �b�n �yt�1 �X>
t b�n�X>

t

�b�nXt

�
yt�1 �X>

t b�n� b�2nXtX
>
t

#
: (3.4)

In the results below we provide the asymptotic properties of the t / Wald test statistics

under the null. Consider the sequence of the null hypotheses H0 : R�n = �n, where �n is the

true value of R�n. Tn (�n) / Wn (�n) are denoted as Tn / Wn for notational simplicity.

Theorem 4 Suppose that Assumptions 1, 2 and 3 hold.

1. When �n = �0 2 ��n, i.e., �n = �0 and �n = �0 for any n 2 N, Tn
A� N (0; 1), and

Wn
A� �2 (dr).

2. When n 2 �n (1; b; c) i.e., �n = b /n with 0 < b < 1 and �n = n1=2c, and y0 =
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op
�
n1=2

�
,

Tn ) T (b; c;'0) =
Rb� (b; c;'0)�

�2"RV�11 (b; c;'0)R
>
�1=2 ;

Wn ) W (b; c;'0) = [Rb� (b; c;'0)]> ��2"RV�11 (b; c;'0)R
>��1Rb� (b; c;'0) ;

where V1 (b; c;'0) is de�ned in Theorem 6 in Appendix A, and b� (b; c;'0) are de�ned
in Theorem 2.

3. When n 2 �n (h; b; c), i.e., �n = b
�
nh with 0 < b < 1 and �n = n�1=2+hc, where

0 < h < 1, Tn
A� N (0; 1), and Wn

A� �2 (dr).

Remark 3 1. In Theorem 4 we obtain the asymptotic distribution of the t / Wald statis-

tics for all three cases we consider. When �n = �0 2 ��n or n 2 �n (h; b; c), Tn / Wn

have the standard and pivotal asymptotic Gaussian / �2 distributions. However, when

n 2 �n (1; b; c), the asymptotic distribution of the Tn / Wn will depend on b� (b; c;'0)
and V (b; c;'0), which themselves are functionals of the Ornstein�Uhlenbeck process
we de�ne in Lemma 2 and depend on the values of unknown nuisance parameters

'0 = f�X ;MX ; �
2
"g and localization parameters fb; cg.

2. Similar to Mikusheva (2012), in this paper we only consider linear null hypotheses

H0 : R�n = �. For the nonlinear null hypothesis, e.g., H0 : r (�n) = � with a di¤er-

entiable function r : R(d�+1) ! Rdr , econometricians usually use the delta method
to approximate the asymptotic variance of r (�n) by b�2nR> �b�n� bV�1

n R
�b�n�, where

R (�) = D�r (�) is the derivative of r (�). When b�n is a consistent estimator for �n, by
the continuous mapping theorem, R

�b�n� p! R (�n). For the problem we consider, how-

ever, we have shown that when n 2 �n (1; b; c) or n 2 �n (h; b; c) with h � 1=2, b�n
is not a consistent estimator for �n, and therefore the bias of R

�b�n� is not negligible.
For inference of nonlinear functions, one may consider the parametric bootstrapping

(Krinsky and Robb, 1986) or the con�dence interval bootstrapping (Woutersen and

Ham, 2013).

Again, when n 2 �n (1; b; c), the asymptotic distributions of Tn /Wn depend on unknown

nuisance parameters '0 = f�X ;MX ; �
2
"g. In Lemma 3 we have already shown that the

unknown nuisance parameters '0 = f�X ;MX ; �
2
"g can be consistently estimated by b'n =nb�X;n;cMX;n; b�2no. Therefore, for any given values of the localization parameters fb; cg, the
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asymptotic distributions of Tn / Wn can be obtained by replacing the unknown nuisance

parameters '0 with the estimates b'n.
Example 3 (Example 1 continued) Again, consider the following model as equation (2.9).

yt = (1� �n) yt�1 + �n (�0;n + �1;nxt) + "t; t = 1; : : : ; n;

where xt
i:i:d:� N (0; 1), "t

i:i:d:� N (0; 1), �n = b /n , �0;n = n
1=2c0, �1;n = n1=2c1, and n = 100.

Let Tn / Wn denote the t / Wald statistics respectively corresponding to H0 : � = �n and

H0 : �1 = �1;n, where �n and �1;n denote the true values of � and �1.

Using Theorem 4, Figures 7 � 10 provide the simulated �nite-sample and asymptotic

densities of Tn / Wn given the true values of fb; c0; c1g. We consider �n 2 f0:02; 0:05; 0:1g
and �0;n = �1;n = 2, i.e., b 2 f2; 5; 10g and c0 = c1 = 0:2. The asymptotic approximations
based on Theorem 4 �t the �nite-sample densities very well.

3.2 Robust Con�dence Sets

In this subsection we obtain the con�dence sets (CS) of R�n by inverting the t / Wald tests.

In the following we focus on the two-sided con�dence intervals based on the Wald tests. The

one-sided / two-sided con�dence intervals based on the t tests are analogous.

In Theorem 4 we have already show that when �n = �0 2 ��n or n 2 �n (h; b; c), the
Wald statistics is pivotally asymptotically �2 (dr)-distributed. And when n 2 �n (1; b; c),
the Wald statistics has a nonstandard and non-pivotal asymptotic distribution depending on

the values of the localization parameters fb; cg. Without any prior information about which
category the parameters n belongs to, a conservative and robust con�dence set (CS

R
n )

is de�ned as a union of CSLn , the CS when n 2 �n (1; b; c), and CSDn , the CS when

�n = �0 2 ��n or n 2 �n (h; b; c).

CSRn (R�n; 1� �; '0) = CSLn (R�n; 1� �; '0) [ CSDn (R�n; 1� �) : (3.5)

1 � � denotes the con�dence coe¢ cient. L and D respectively represent �local-to-zero �n�

and �distant-from-zero �n�.

CSDn is obtained by simply inverting the Wald test. Let �
2
dr;1�� be the (1� �)-quantile

of �2 (dr). Since the Wald statistics is pivotally asymptotically �2 (dr)-distributed when
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�n = �0 2 ��n, or n 2 �n (h; b; c),

CSDn (R�n; 1� �) =
�
� : Wn (�) � �2dr;1��

	
: (3.6)

For CSLn , i.e., the CS when n 2 �n (1; b; c), �rst we consider a simple case. Since

R�n = R
�
�n; �

>
n

�>
= R

�
n�1b; n1=2c>

�>
when n 2 �n (1; b; c), let H (R; �) be the �null-

imposition set�for the localization parameters fb; cg, which contains all possible values of
the localization parameters fb; cg under the null R�n = �.

H (R; �) =
n
b; c : R

�
n�1b; n1=2c>

�>
= �;

�
n�1b; n1=2c>

	
2 �n

o
: (3.7)

The de�nition of the null-imposition set H (R; �) is similar to equation (5.2) in Andrews and
Cheng (2012). If H (R; �) is a singleton for every �, CSLn can also be obtained by simply
inverting the Wald test. Let �1�� (W (b�; c�;'0)) be the (1� �)-quantile of W (b�; c�;'0),

and R
�
n�1b�; n

1=2c>�
�>
= �. When n!1,

CSLn (R�n; 1� �; '0) =
�
� : Wn (�) � �1�� (W (b�; c�;'0))

	
: (3.8)

For example, suppose that R = Id�+1 and R�n = �n, i.e., we are interested in the con�dence
set of �n. Since �n = f�n; �ng =

�
n�1b; n1=2c

	
, for any given null hypothesis H0 : �n = ��,

the values of the localization parameters are available under the null hypothesis. Therefore

the asymptotic distribution of the Wald statistics is also available. When H (R; �) is a
singleton, the robust CS is de�ned as:

CSRn (R�n; 1� �; '0) =
�
� : Wn (�) � cR (R�n; 1� �; '0)

	
(3.9)

=
�
� : Wn (�) � max

�
�2dr;1��; �1�� (W (b�; c�;'0))

		
:

However, the null-imposition set H (R; �) may not be a unit set. For example, suppose
R�n = �n, i.e., we are only interested in the con�dence set of �n. Then for any given

null hypothesis H0 : �n = ��, even though the value of c =n�1=2�n is available under the

null, the value of b = n�n is still unknown. Since the asymptotic null distribution of the

Wald statistics depends on the value of b, we are not able to determine the asymptotic null

distribution, and the corresponding CS.

For the case when n 2 �n (1; b; c) and the null-imposition set H (R; �) is not a unit set,
we consider two di¤erent methods to obtain the CS, the null-imposed least-favorable method
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(Andrews and Cheng, 2012) and the projection-based method (Dufour, 1997). The null-

imposed least-favorable method establishes the con�dence set CSL;LFn by selecting fb�; c�g
with the greatest critical value among H (R; �). When n!1,

CSL;LFn (R�n; 1� �; '0) =
(
� : Wn (�) � sup

fb;cg2H(R;�)
�1�� (W (b; c;'0))

)
: (3.10)

For example, in the case when R�n = �n, since the value of b = n�n is unknown under the

null hypotheses, the null-imposed least-favorable method constructs the CSL;LFn by selecting

the value of b maximizing �1�� (W (b; c;'0)). CSL;LFn is conservative since the greatest

critical value is used. The robust CS based on the null-imposed least-favorable method is

de�ned as:

CSR;LFn (R�n; 1� �; '0) =
�
� : Wn (�) � cR;LF (R�n; 1� �; '0)

	
(3.11)

=

(
� : Wn (�) � max

(
�2dr;1��; sup

fb;cg2H(R;�)
�1�� (W (b�; c�;'0))

))
:

The projection-based method establishes the con�dence set CSL;Pn by projecting an

(d� + 1)-sphere to the Rdr-space. For any given null hypothesis H0 : R�n = �, let R = PQ,
where P 2Rdr�(d�+1), Q 2R(d�+1)�(d�+1), rank (P) = dr and rank (Q) = d� +1. The the null
hypothesis H0 : R�n = � can be written as

H0 : PQ�n = P$: (3.12)

The matrices P and Q always exist since one can always select fP;Qg= fR; Id�+1g. Let

H (Q; $) =
n
b; c : Q

�
n�1b; n1=2c>

�>
= $;

�
n�1b; n1=2c>

	
2 �n

o
: (3.13)

By rank (Q) = d�+1, H (Q; $) is a singleton. The CS for Q�n can be obtained by equation
(3.8).

CSLn (Q�n; 1� �; '0) =
�
$ : Wn ($) � �1�� (W (b$; c$;'0))

	
:

The con�dence set CSL;Pn is established by projecting CSLn , an (d� + 1)-sphere, to the Rdr-
space.

CSL;Pn (R�n; 1� �; '0) = PCSLn (Q�n; 1� �; '0) (3.14)

=
�
� : � = P$; Wn ($) � �1�� (W (b$; c$;'0))
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In practice, a simple choice for the matrices fP;Qg is fR; Id�+1g, the matrix R itself and the
identity matrix Id�+1. For example, in the case whenR�n = �n, the projection-based method
constructs the CSL;Pn by projecting the CS of �n to the Rd� -space. CSL;P1 is also conservative

since for any set C �R(d�+1), the event fQ�n 2 Cg entails fPQ�n 2 PCg. However, intuitively
the projection-based method uses the information from the estimates for all parameters of

interest, and it is possible to obtain a more informative but still conservative con�dence set

compared to the null-imposed least-favorable one under certain circumstances. The robust

CS based on the projection-based method is de�ned as:

CSR;Pn (R�n; 1� �; '0) = PCSRn (Q�n; 1� �; '0) (3.15)

=
�
� : � = P$; Wn ($) � max

�
�2d�+1;1��; �1�� (W (b$; c$;'0))

		
For any �nite-sample con�dence set CSn, the asymptotic size (AsySz) approximates the

smallest �nite-sample coverage probability.

AsySz (CSn) = lim inf
n!1

inf
n2�n

P (R�n 2 CSn) : (3.16)

Notice that in the de�nition of the asymptotic size (equation (3.16)) lim infn!1 is taken

before infn2�, i.e., the asymptotic size is de�ned as the probability limit (as n!1) of the
in�mum of the exact �nite-sample coverage probability. This de�nition re�ects the fact that

we are interested in the exact coverage probability, and asymptotic coverage probability is

simply used to approximate the exact one. Since the exact �nite-sample coverage probability

are unavailable, in the following Theorem 5 we show that we can exchange lim infn!1 and

infn2�. That is, we show that the asymptotic size can be obtain by taking the in�mum of

the asymptotic coverage probability. Similar arguments can be found in Andrews and Cheng

(2012), Guggenberger (2012), Li (2013), Mikusheva (2007, 2012) and many others. Theorem

5 shows the correctness of the asymptotic sizes of CSRn and CS
R;LF
n . The projection-based

CSR;Pn , however, may be asymptotic oversized, i.e., may have an asymptotic size higher than

the required con�dence coe¢ cient 1� �.

Theorem 5 Suppose that Assumptions 1, 2 and 3 hold and y0 = op
�
n1=2

�
when n 2

�n (1; b; c).

1. When the null-imposition setH (R; �) is a singleton for every �, AsySz
�
CSRn (R�n; 1� �; '0)

�
=

1� �.

2. AsySz
�
CSR;LFn (R�n; 1� �; '0)

�
= 1� �.
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3. AsySz
�
CSR;Pn (R�n; 1� �; '0)

�
� 1� �.

Remark 4 1. As in Andrews and Cheng (2012, 2013a, 2013b), we obtain the CS by

inverting the tests. One may consider to obtain the CS directly from the asymptotic

distributions of b�n, as in Mikusheva (2012). However, we have already shown that when
n 2 �n (h; b; c), though the asymptotic distributions of b�n will depend on the unknown
values of fh; b; cg, the t / Wald statistics will have standard and pivotal asymptotic
distributions. Therefore, to consider the t / Wald statistics is much simpler then

considering the estimates b�n.
2. By virtue of our linear drifting sequence approaches, as in Stock (1991), there is a sur-

jective mapping from the values of localization parameters fb; cg to the null hypotheses
corresponding to the tests to be inverted in obtaining the CS. Therefore, the null-

imposed least-favorable method takes the supremum of the critical values of tests only

with respect to the possible values of fb; cg in H (R; �). Without the onto mapping,
e.g., if we simply assume n�1=2�n ! c, the simple least-favorable method would take

the supremum w.r.t. all possible values of the fb; cg in the parameter space �n. A
wider and less informative con�dence set may be obtained.

3. For the projection-based method, again, under our linear drifting sequence approaches,

a con�dence set for Q�n is directly available since the null-imposition set H (Q; $) is
a unit set. For example, when Q =Id�+1, we are able to construct a con�dence set
for �n since the values of fb; cg are known under the null hypotheses of the tests to
be inverted. Without the onto mapping, the con�dence set for Q�n will not be directly

available.

4. In the case when the CS of �n is interested, the null-imposed least-favorable selects the

value of b = n�n maximizing the critical values of the Wald tests to be inverted. Since

the null-imposed least-favorable CS (CSL;LFn ) may be very large, McCloskey (2011)

proposed a Bonferroni-based size-correction method to obtain a more informative CS.

When the parameters of interest are f�n; �ng and �n is not identi�ed if and only if
�n = 0, McCloskey (2011) suggested to obtain a CS for �n at �rst, and to select

the value of the localization parameter corresponding to �n within the obtained CS.

However, for the problem considered in this paper, Theorem 2 shows that the asymptotic

distribution of b�n will depend on not only b but also c, i.e., the localization parameters
corresponding to the true values of f�n; �ng. Therefore it is not feasible to construct a
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CS with correct asymptotic coverage probability of �n without any information of the

true value of �n.

Again, when n 2 �n (1; b; c), the CS of R�n depends on unknown nuisance parameters
'0 = f�X ;MX ; �

2
"g. Since the nuisance parameters '0 can be consistently estimated byb'n = nb�X;n;cMX;n; b�2no. Therefore, the CS can be obtained by replacing '0 with b'n.

Example 4 (Example 1 continued) Again, consider the following model as equation (2.9).

yt = (1� �n) yt�1 + �n (�0;n + �1;nxt) + "t; t = 1; : : : ; n;

where xt
i:i:d:� N (0; 1), "t

i:i:d:� N (0; 1), �n 2 [0:02; 0:5], �0;n 2 [0; 2], �1;n 2 [0; 2], and

n = 100. In this example we construct the CS for R�n = �1;n with 1 � � = 0:8 and 0:9 by
the null-imposed least-favorable method (CSL;LFn ) and the projection-based method (CSL;Pn )

and compare the CSs with the CS from the standard (Newey and McFadden, 1994) based

on the �2 (1) distribution.

Figures 11 and 12 provide the simulated coverage probabilities (CP ) of the three CSs

when �1;n = 2. For both cases 1 � � = 0:8 and 0:9 and for every values of �n and �0;n,

CSL;LFn and CSL;Pn have CP s greater than the con�dence coe¢ cient 1 � �, while the CP s
of the �2 (1) CS are seriously downward biased, especially when �n is close to zero. Under

most circumstances CSL;LFn has coverage probabilities closer to 1 � �, especially when �n
is close to zero. However, when �n is distant from zero, CSL;Pn may have better coverage

probabilities.

For all results 5; 000 simulation repetitions are used. For values of �n and �0;n / �1;n,

11; 466 grids are generated in the true parameter space ��n = [0; 0:5]� [0; 4]
2, where grids for

�n and �0;n / �1;n are respectively of size 0:02 and 0:2.

4 Empirical Application: U.S.�s Forecast-BasedMPRF

According to our asymptotic theory, we construct the conservative con�dence sets for the

reaction coe¢ cients f� _p; �xg in U.S.�s forecast-basedMPRF and examine if f� _p; �xg belong
to the determinacy region DR = f� _p > 1; �x > 0g. When � _p > 1 and �x > 0, regardless of
the values of other unknown parameters, the MPRF su¢ ciently satis�es the determinacy

condition, i.e., the monetary authority adjusts the nominal interest rates with �su¢ cient

strength�in response to in�ations and output gaps (Woodford, 2003; Galí, 2008)
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In the NLS estimation we use the Greenbook projections, i.e., the real-time data of the

ex ante forecasts for in�ations and the expected output gaps of the Federal Reserve. The

real-time data is available in the Federal Reserve Bank of Philadelphia for 1987:3�2007:4,

i.e., n = 82. As in Nikolsko-Rzhevskyy (2011), we consider the following model with k = 0

or 1.

it = (1� �) it�1 + � (�� + � _pEt _pt;k + �xEtxt;k) + "t; (4.1)

where fitg denote the average of e¤ective federal funds target rates at the last month of each
quarter, and fEt _pt;k;Etxt;kg are Greenbook projections for the annualized in�ations and the
average output gaps between periods t and t+ k. t = 1; : : : ; 82. Figure 13 provides the plots

of the data. Table 1 reports the NLS estimates, where in the parentheses we report the

estimates of standard errors according to Equation (3.4).

Let � = �n = n�1b and �� = ��;n = n1=2c�. The null-imposed least-favorable CS

(CSL;LFn ) of f� _p; �xg is obtained by selecting the values of b and c� maximizing the critical
values of the Wald tests corresponding to di¤erent values of f� _p; �xg. Figure 14 reports the
CSL;LFn and the standard CS based on �2 (2) distribution. For both cases for k = 0 and 1,

the CSL;LFn with con�dence coe¢ cients 1 � � = 0:8, 0:9 and 0:95 contain many values not
in the region DR = f� _p > 1; �x > 0g.

As a robustness check, we also construct the projection-based CS (CSL;Pn ) of f� _p; �xg,
which are obtained by projecting the CS of all parameters of interest from the R4 space to
the R2 space for f� _p; �xg. Figure 15 reports the CSL;Pn s. For all cases CSL;Pn are even larger

than CSL;LFn and contain even more values not in DR. Our empirical results suggest that
the NLS estimates for the reaction coe¢ cients are not accurate su¢ ciently to rule out the

possibility of indeterminacy.

For all results 5; 000 simulation repetitions are used. For values of parameters, 45; 056

grids are generated in the true parameter space ��n = [0; 0:2] � [�1; 2]3, where grids for �
and �� / � _p / �x are respectively of size 0:02 and 0:2.

5 Concluding Remarks

In this paper we modify the method of Andrews and Cheng (2012) on inference with weak /

semi-strong identi�cation and establish the asymptotic distributions of the NLS estimator

/ tests for the forecast-based monetary policy reaction function (MPRF ) with a close-to-

unity smoothing coe¢ cient. Conservative con�dence sets with correct / over asymptotic
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coverage probability for linear functions of parameters are obtained by the null-imposed

least-favorable method (NILF ) and the projection-based method. Our empirical result

suggests that the NLS estimates for the reaction coe¢ cients are not accurate su¢ ciently to

rule out the possibility of indeterminacy for U.S.�s forecast-basedMPRF for 1987:3�2007:4.
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6 Appendix A: Details of Lemma 2 and Theorem 4

In this section we provide details of Lemma 2 and Theorem 4. Proofs are collected in

Appendix B.

Lemma 5 (Lemma 2) Suppose that Assumptions 1, 2 and 3 hold, n 2 �n (1; b; c), and y0 =
op
�
n1=2

�
. Let Z be a standard-normally distributed random variable, W" (�) be a standard

Wiener processes and J�b;" (�) be an Ornstein�Uhlenbeck process such that for any r 2 [0; 1],
when n!1,

n�1=2
nX
t=1

Xt"t ) �"M
1=2
X Z; n�1=2

bnrcX
t=1

"t ) �"W" (r) ; and

n�1=2
bnrcX
t=1

�
1� b

n

�bnrc�t
"t ) J�b;" (r) =

Z r

0

exp (�b (r � s)) dW" (s) :

Then for any Rd�-valued � with n�1=2� ) �� as n!1,

1. (@Qn (0; �; n)) /@� ) G (��; b; c;'0), where

G (��; b; c;'0)

= �2"

Z 1

0

J�b;" (r) dW" (r) + �"

�Z 1

0

(1� exp (�br)) dW" (r)

�
c>�X � �"�>�M

1=2
X Z

�b�2"
Z 1

0

J 2
�b;" (r) dr � 2b�"

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�
c>�X

�b
�Z 1

0

(1� exp (�br))2 dr
��
c>�X

�2
+ b�"

�Z 1

0

J�b;" (r) dr
�
(c+ ��)

> �X

+b

�Z 1

0

(1� exp (�br)) dr
�
(c+ ��)

> �Xc
>�X � b�>�MXc:

2. n�1
�
@2Qn (0; �; n)

�
@�2

�
) H (��; b; c;'0), where

H (��; b; c;'0)

= �2"

Z 1

0

J 2
�b;" (r) dr + 2�"

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�
c>�X

+

�Z 1

0

(1� exp (�br))2 dr
��
c>�X

�2
+ �>�MX��

�2�"
�Z 1

0

J�b;" (r) dr
�
�>� �X � 2

�Z 1

0

(1� exp (�br)) dr
�
�>� �Xc

>�X :
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Theorem 6 (Theorem 4) Suppose that Assumptions 1, 2 and 3 hold.

1. When �n = �0 2 ��n, i.e., �n = �0 and �n = �0 for any n 2 N, Tn
A� N (0; 1), and

Wn
A� �2 (dr).

2. When n 2 �n (1; b; c) i.e., �n = b /n with 0 < b < 1 and �n = n1=2c, and y0 =

op
�
n1=2

�
,

B�1 (1) bVnB
�1 (1) =

"
n�1=2 01�d�

0d��1 nId�

# bVn

"
n�1=2 01�d�

0d��1 nId�

#

) V1 (b; c;'0) =
"
V��1 (b; c;'0) V��1 (b; c;'0)

V��1 (b; c;'0) V��1 (b; c;'0)

#
;

where V��1 (b; c;'0) =
�
V��1 (b; c;'0)

�>
,

V��1 (b; c;'0) = �2"

Z 1

0

J 2
�b;" (r) dr + 2�"

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�
c>�X

+

�Z 1

0

(1� exp (�br))2 dr
��
c>�X

�2 � 2�"�Z 1

0

J�b;" (r) dr
�b�>� �X

�2
�Z 1

0

(1� exp (�br)) dr
�b�>� �Xc>�X + b�>�MXb��;

V��1 (b; c;'0) = b�2� (b��)MX ;

V��1 (b; c;'0) = b�� (b��)��MXb�� � �"�Z 1

0

J�b;" (r) dr
�
�X

�
�Z 1

0

(1� exp (�br)) dr
�
�Xc

>�X

�
;

and

Tn ) T (b; c;'0) =
Rb� (b; c;'0)�

�2"RV�11 (b; c;'0)R
>
�1=2 ;

Wn ) W (b; c;'0) = [Rb� (b; c;'0)]> ��2"RV�11 (b; c;'0)R
>��1Rb� (b; c;'0) ;

where b�� (b��) = b�� (b�� (b; c;'0) ; b; c;'0), b�� = b�� (b; c;'0) and b� (b; c;'0) are de�ned
in Theorem 2.

3. When n 2 �n (h; b; c), i.e., �n = b
�
nh with 0 < b < 1 and �n = n�1=2+hc, where

0 < h < 1, Tn
A� N (0; 1), and Wn

A� �2 (dr).
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7 Appendix B: Proofs of Theorems and Lemmas

Proof. (Lemma 1) For simplicity, we only illustrate the case when d� = 1. When �n = 0,
yt = yt�1 + "t for t = 1; : : : ; n. By the law of number for stationary ergodic sequences

(White, 2001, Theorem 3.34, p. 44), the central limit theorem for stationary ergodic adapted

mixingales (White, 2001, Theorem 5.16, p. 125), and Lemma 6 with b! 0,

n�1
nX
t=1

X2
t ! a:s:MX ; n�1=2

nX
t=1

Xt"t ) �"M
1=2
X Z � N

�
0; �2"MX

�
;

n�2
nX
t=1

y2t�1 ) �2"

Z 1

0

W2
" (r) dr; n�1

nX
t=1

yt�1"t ) �2"

Z 1

0

W" (r) dW" (r) ; and

n�3=2
nX
t=1

Xtyt�1 ) �X�"

Z 1

0

W" (r) dr:

Then by the �rst order condition of equation (2.1),

n�1=2b�n =

�
n�2

Pn
t=1 y

2
t�1
� �
n�1=2

Pn
t=1Xt"t

�
� (n�1

Pn
t=1 yt�1"t)

�
n�3=2

Pn
t=1Xtyt�1

�
(n�3=2

Pn
t=1Xtyt�1) (n�1=2

Pn
t=1Xt"t)� (n�1

Pn
t=1 yt�1"t) (n

�1Pn
t=1X

2
t )

)
�2"
R 1
0
W2
" (r) dr � �"M

1=2
X Z��2"

R 1
0
W" (r) dW" (r) � �X�"

R 1
0
W" (r) dr

�X�"
R 1
0
W" (r) dr � �"M1=2

X Z��2"
R 1
0
W" (r) dW" (r) �MX

= b�� = Op (1) ;

n�1b�n =

�
n�1=2

Pn
t=1Xt"t

�
n�1=2b�n � (n�1Pn

t=1 yt�1"t)

(n�1
Pn

t=1X
2
t ) (n

�1=2b�n)2 � 2 (n�3=2Pn
t=1Xtyt�1)n�1=2b�n + �n�2Pn

t=1 y
2
t�1
�

)
�"M

1=2
X Z � b�� � �2" R 10 W" (r) dW" (r)

MX � b�2� � 2�X�" R 10 W" (r) dr � b�� + �2" R 10 W2
" (r) dr

= Op (1) :

Proof. (Lemma 2 / Lemma 5)

1. ((@Qn (0; �; n)) /@� ) By Lemma 6, the law of number for stationary ergodic sequences

(White, 2001, Theorem 3.34, p. 44), and the central limit theorem for stationary
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ergodic adapted mixingales (White, 2001, Theorem 5.16, p. 125),

@

@�
Qn (0; �; n) = n

�1
nX
t=1

(yt � yt�1)
�
yt�1 �X>

t �
�

= n�1
nX
t=1

�
"t � �nyt�1 + �nX>

t �n
� �
yt�1 �X>

t �
�

= n�1
nX
t=1

yt�1"t � n�1�>
nX
t=1

Xt"t � n�1�n
nX
t=1

y2t�1 + n
�1�n�

>
nX
t=1

Xtyt�1

+n�1�n�
>
n

nX
t=1

Xtyt�1 � n�1�n�>
 

nX
t=1

XtX
>
t

!
�n

) �2"

Z 1

0

J�b;" (r) dW" (r) + �"

�Z 1

0

(1� exp (�br)) dW" (r)

�
c>�X � �"�>�M

1=2
X Z

�b�2"
Z 1

0

J 2
�b;" (r) dr � 2b�"

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�
c>�X

�b
�Z 1

0

(1� exp (�br))2 dr
��
c>�X

�2
+ b�"

�Z 1

0

J�b;" (r) dr
�
(c+ ��)

> �X

+b

�Z 1

0

(1� exp (�br)) dr
�
(c+ ��)

> �Xc
>�X � b�>�MXc:

2. (n�1
�
@2Qn (0; �; n)

�
@�2

�
) By Lemma 6 and the law of large number for stationary

ergodic sequences (White, 2001, Theorem 3.34, p. 44),

n�1
@2

@�2
Qn (0; �; n) = n

�2
nX
t=1

�
yt�1 �X>

t �
�2

= n�2
nX
t=1

y2t�1 + n
�2�>

nX
t=1

XtX
>
t � � 2n�2�>

nX
t=1

Xtyt�1

) �2"

Z 1

0

J 2
�b;" (r) dr + 2�"

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�
c>�X

+

�Z 1

0

(1� exp (�br))2 dr
��
c>�X

�2
+ �>�MX��

�2�"
�Z 1

0

J�b;" (r) dr
�
�>� �X � 2

�Z 1

0

(1� exp (�br)) dr
�
�>� �Xc

>�X :

Proof. (Theorem 2) For notational simplicity, let b�� denote b�� (b�� (b; c;'0) ; b; c;'0), b��
denote b�� (b; c;'0), and q (��; ��) denote q (��; ��; b; c;'0). Also, let b��;n = nb�n and b��;n =
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n�1=2b�n. Then it su¢ ces to show nb��;n; b��;no) nb��; b��o. Let
qn (��; ��) = qn (��; ��; b; c;'0)

=
@

@�
Qn
�
0; n1=2��; n

�
� �� +

1

2
n�1

@2

@�2
Qn
�
0; n1=2��; n

�
� �2�:

Then by equations (2.1) and (2.3) / equations (2.6) and (2.7),
nb��;n; b��;no / nb��; b��o are

respectively the unique minimizers of qn (��; ��) and q (��; ��) in Rd�+1, i.e.,

qn

�b��;n; b��;n� = min
�� ;��

qn (��; ��) ; and q
�b��; b��� = min

�� ;��
q (��; ��) :

By Lemma 2 and equation (2.5), for any given f��; ��g 2 C, qn (��; ��)) q (��; ��) when

n ! 1. Since qn (��; ��) and q (��; ��) are concave functions with respect to f��; ��g, by
the fact that pointwise convergence of concave functions on a dense subset of an open set

implies uniform convergence on any compact subset of the open set (Newey and McFadden,

1994, proof of Theorem 2.7, pp. 2133, 2134), qn (��; ��) ) q (��; ��) uniformly on any

compact set of R when n!1.
Consider a compact set C � R. Let Zn / Z be the inverse images of qn (��; ��) /

q (��; ��) in Rd�+1 respectively, i.e., Zn =
�
f��; ��g 2 Rd�+1 : qn (��; ��) 2 C

	
, and Z =�

f��; ��g 2 Rd�+1 : q (��; ��) 2 C
	
. By the compactness ofC and the continuity of qn (��; ��)

/ q (��; ��) with respect to f��; ��g, Zn / Z are also compact. And since qn (��; ��) )
q (��; ��) uniformly on C when n!1, Zn ! Z when n!1. Let

nb���;n; b���;no / nb���; b���o
be the minimizers of of qn (��; ��) and q (��; ��) in Zn / Z, i.e.,

qn

�b���;n; b���;n� = min
f�� ;��g2Zn

qn (��; ��) ; and q
�b���; b���� = min

f�� ;��g2Z
q (��; ��) :

By the concavity of qn (��; ��) and q (��; ��),
nb���;n; b���;no / nb���; b���o are unique. If nb���;n; b���;no

are tight for every n 2 N, by the compactness of Zn,
nb���;n; b���;no will be uniformly tight

with respect to n. Then by the Argmax continuous mapping theorem (van der Vaart and

Wellner, 1996, p.286), when n!1,nb���;n; b���;no = argmin
f�� ;��g2Zn

qn (��; ��)) argmin
f�� ;��g2Z

q (��; ��) =
nb���; b���o :

Since C is arbitrary, the desired results directly follow. That is, for any compact subset
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C � R to which min
�� ;��

qn (��; ��) and min
�� ;��

q (��; ��) belong, when n!1,

nb��;n; b��;no = argmin
�� ;��

qn (��; ��) = argmin
f�� ;��g2Zn

qn (��; ��)

) argmin
f�� ;��g2Z

q (��; ��) = argmin
�� ;��

q (��; ��) =
nb��; b��o :

It only remains to show the tightness of
nb��;n; b��;no = nn�1b�n; n�1=2b�no. For simplicity,

we only illustrate the case when d� = 1. By the �rst order condition of equation (2.1), the law

of number for stationary ergodic sequences (White, 2001, Theorem 3.34, p. 44), the central

limit theorem for stationary ergodic adapted mixingales (White, 2001, Theorem 5.16, p.

125), and Lemma 6,
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�
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) = Op (1) ;

b��;n =

( �
bn�3=2

Pn
t=1Xtyt�1 + bcn

�1Pn
t=1X

2
t + n

�1=2Pn
t=1Xt"t

�
n�1=2b�n

�
�
bn�2

Pn
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t=1Xtyt�1 + n

�1Pn
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�1=2b�n)2 � 2 (n�3=2Pn
t=1Xtyt�1)n�1=2b�n + �n�2Pn

t=1 y
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t�1
� = Op (1) :

Proof. (Lemma 3) The consistency of b�X;n and cMX;n directly follows the law of number

for stationary ergodic sequences (White, 2001, Theorem 3.34, p. 44). For b�2n, by Lemma 6,
Theorem 2, and the Kolmogorov law of large number (White, 2001, Theorem 3.1, p. 32),

b�2n = n�1
nX
t=1

h
yt �

�
1� b�n� yt�1 � b�nX>

t b�ni2
= n�1

nX
t=1

h
"t +

�b�n � �n� yt�1 � �nX>
t (b�n � �n)� �b�n � �n�X>

t b�ni2
= n�1

nX
t=1

"2t +Op
�
n�1
� p! �2":

Proof. (Lemma 4)
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1. (n1=2B�1 (h)D�Qn (�n; n))

n1=2B�1 (h)D�Qn (�n; n) =

"
n�1=2�h=2

Pn
t=1

�
yt�1 �X>

t �n
�
"t

��nn�1=2+h
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#
:

By Lemma 7,

n�1=2�h=2
nX
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�
yt�1 �X>

t �n
�
"t = n

�1=2�h=2
nX
t=1

yt�1"t + op (1) ;

therefore, by Lemma 7 and the central limit theorem for stationary ergodic adapted

mixingales (White, 2001, Theorem 5.16, p. 125),
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:
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:

By Lemma 7 and the law of large number for stationary ergodic sequences (White,

2001, Theorem 3.34, p. 44),
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Therefore,

B�1 (h)D��>Qn (�n; n)B
�1 (h)

p!
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(2b)�1 �2"

0d��1 b2MX

#
:

Proof. (Theorem 3) First we show that b�n��n = O �n�1=2�h=2� and b�n��n = O �n�1=2+h�.
Again, for simplicity, we only illustrate the case when d� = 1. By the �rst order condition of

equation (2.1), the law of number for stationary ergodic sequences (White, 2001, Theorem

3.34, p. 44), the central limit theorem for stationary ergodic adapted mixingales (White,

2001, Theorem 5.16, p. 125), and Lemma 7,
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Then we show that R (��; n) = op (n
�1). By equation (2.10),
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By Lemma 7, the law of large number for stationary ergodic sequences (White, 2001, Theo-

rem 3.34, p. 44), �� = O
�
n�1=2�h=2

�
+O

�
n�h

�
and �� = O

�
n�1=2+h

�
,

@3Qn (�
�; n)

@�2@�
= �2n�1

nX
t=1

yt�1X
>
t + 2�

�>n�1
nX
t=1

XtX
>
t = Op

�
n�1=2+h

�
;

@3Qn (�
�; n)

@�@�@�>
= 2��n�1

nX
t=1

XtX
>
t = O

�
n�1=2�h=2

�
+O

�
n�h

�
:
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Let
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By de�nition (equation (2.1)), b�n is the minimizer of Qn (�; n)�Qn (�n; n), and therefore
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Therefore ��
n

�b�n� A
= Z�n. By Lemma 4,
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:

Proof. (Theorem 4 / Theorem 6) 1. directly follows by Theorem 4.1 of Newey andMcFadden
(1994, p. 2156). For 2. by equations (3.4) and (2.11),
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By Lemma 6, the law of large number and Theorem 2:
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where b�� (b��) = b�� (b�� (b; c;'0) ; b; c;'0) and b�� = b�� (b; c;'0). And the results follow by
Theorem 2 and Lemma 3.

For 3., it su¢ ces to show b�2n p! �2" and B
�1 (h) bVnB

�1 (h)
p! Vh (b;'0). For b�2n, by

Lemma 7, Theorem 3, and the Kolmogorov law of large number (White, 2001, Theorem 3.1,
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p. 32),

b�2n = n�1
nX
t=1

h
yt �

�
1� b�n� yt�1 � b�nX>

t b�ni2
= n�1

nX
t=1

h
"t +

�b�n � �n� yt�1 � �nX>
t (b�n � �0)� �b�n � �n�X>

t b�ni2
= n�1

nX
t=1

"2t +Op
�
n�1
� p! �2":

For B�1 (h) bVnB
�1 (h), by equations (3.4) and (2.11),

B�1 (h) bVnB
�1 (h) =

"
n�1�h

Pn
t=1

�
yt�1 �X>

t b�n�2
�n�1�h=2b�nPn

t=1Xt

�
yt�1 �X>

t b�n� n�1+2hb�2nPn
t=1XtX

>
t

#
:

The results follow by Lemma 7, Theorem 3, and the law of large number for stationary

ergodic sequences (White, 2001, Theorem 3.34, p. 44),

n�1�h
nX
t=1

�
yt�1 �X>

t b�n�2 = n�1�h
nX
t=1

y2t�1 +Op
�
n�1+h

� p! �2"
2b
;

n�1+2hb�2n nX
t=1

XtX
>
t =

�
nh
�b�n � �n�+ b�2 n�1 nX

t=1

XtX
>
t

p! b2MX ;

�n�1�h=2b�n nX
t=1

Xt

�
yt�1 �X>

t b�n� = Op
�
n�1=2�h=2

� p! 0d��1:

And the remains directly follow by Theorem 3.

Proof. (Theorem 5) We �rst prove 2., i.e.,

lim inf
n!1

inf
n2�

CPR;LFn (n) = min

�
inf

fb;cg2H(R;�)
CPL;LF1 (b; c) ; CPD1

�
= 1� �:

where, by de�nition,

AsySz
�
CSR;LFn (R�n; 1� �; '0)

�
= lim inf

n!1
inf
n2�

CPR;LFn ;
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and

CPR;LFn (n) = P

 
Wn (�) � max

(
sup

fb;cg2H(R;�)
�1�� (W (b�; c�;'0)) ; �

2
dr;1��

)!
;

CPL;LF1 (b; c) = lim inf
n!1

P

 
Wn (�) � sup

fb;cg2H(R;�)
�1�� (W (b�; c�;'0))

����� n 2 �n (1; b; c)
!
= 1� �;

CPD1 = lim inf
n!1

P
�
Wn (�) � �2dr;1��

�� �n = �0 2 ��n or n 2 �n (h; b; c)
�
= 1� �:

Our proof is similar to the proof of Lemma 2.1 in Andrews and Cheng (2012). Because in

the problem considered in this paper, the parameter causing the potential weak identi�cation,

�, is only one-dimensional, our proof is much simpler.

Since for any function fn (x),

inf
x
lim inf
n!1

fn (x) � lim inf
n!1

inf
x
fn (x) ;

therefore

lim inf
n!1

inf
n2�

CPR;LFn � min
�

inf
fb;cg2H(R;�)

CPL;LF1 (b; c) ; CPD1

�
= 1� �:

Let f�n 2 �n : n 2 Ng be a sequence such that

lim inf
n!1

CPR;LFn (�n) = lim inf
n!1

inf
n2�

CPR;LFn (n) :

Such a sequence always exists since according to the axiom of choice, we can always se-

lect each element in this sequence as the in�mizer of CPLn for every n 2 N. Let �n =
f��n; �0g = f��n; ��n; �0g. Then by De�nition 1, either �n 2 �n (1; b; c), or �

�
n = �0 2 ��n

/ �n 2 �n (h; b; c). In the former case lim infn!1CPR;LFn (�n) = CPL1 (b
�; c�), where

b� = n�1��n and c
� = n1=2��n, and CP

L
1 (b

�; c�) = 1 � � for all fb�; c�g 2 H (R; �). In
the later case lim infn!1CPR;LFn (�n) = CP

D
1 = 1� �. Therefore

lim inf
n!1

inf
n2�

CPR;LFn � min
�

inf
fb;cg2H(R;�)

CPL;LF1 (b; c) ; CPD1

�
= 1� �:

1. directly follows since 1. is a special case of 2. For 3., since

AsySz
�
CSRn (Q�n; 1� �; '0)

�
= 1� �;
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and for any set C, f�n 2 Cg entails fP�n 2 PCg, therefore,

lim inf
n!1

inf
n2�

P
�
R�n 2 CSR;Pn (R�n; 1� �; '0)

�
� lim inf

n!1
inf
n2�

P
�
Q�n 2 CSRn (Q�n; 1� �; '0)

�
= 1� �:

8 Appendix C: Supplementary Results and Proofs

This section states and proves some results used in the proofs of the theorems.

Lemma 6 Suppose that Assumptions 1, 2 and 3 hold, y0 = op
�
n1=2

�
, and n 2 �n (1; b; c).

LetW" (�) andWX (�) be two standard Wiener processes (one-dimensional and d�-dimensional,
respectively), and J�b;" (�) and J�b;X (�) be an Ornstein�Uhlenbeck process. For any r 2 [0; 1],
when n!1,

n�1=2
bnrcX
t=1

"t ) �"W" (r) ; n�1=2
bnrcX
t=1

(Xt�i � �X)
> ) �

1=2
X WX (r) ;

J�b;" (r) =

Z r

0

exp (�b (r � s)) dW" (s) and J�b;X (r) =
Z r

0

exp (�b (r � s)) dWX (s)

Then as n!1, we have the following results.

1. n�1=2ybnrc ) �"J�b;" (r) + c>�X (1� exp (�br)).

2. n�3=2
Pn

t=1 yt�1 ) �"
R 1
0
J�b;" (r) dr + c>�X

�R 1
0
(1� exp (�br)) dr

�
.

3. n�2
Pn

t=1 y
2
t�1 ) �2"

R 1
0
J 2
�b;" (r) dr + 2�"c

>�X

�R 1
0
(1� exp (�br))J�b;" (r) dr

�
+
�
c>�X

�2 �R 1
0
(1� exp (�br))2 dr

�
.

4. n�1
Pn

t=1 yt�1"t ) �2"
R 1
0
J�b;" (r) dW" (r) + �"c

>�X

�R 1
0
(1� exp (�br)) dW" (r)

�
.

5. n�1
Pn

t=1 (Xt � �X) yt�1 ) �"�
1=2
X

R 1
0
J�b;" (r) dWX (r)

+c>�X�
1=2
X

�R 1
0
(1� exp (�br)) dWX (r)

�
.

6. n�3=2
Pn

t=1Xtyt�1 ) �"

�R 1
0
J�b;" (r) dr

�
�X +

�R 1
0
(1� exp (�br)) dr

�
�Xc

>�X .
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Proof. For 1., under Assumption 1, equation (1.2) can be written as:

ybnrc =
1X
i=0

(1� �n)
i "bnrc�i + �n

1X
i=0

(1� �n)
iX>

bnrc�i�n

= (1� �n)
bnrc y0 +

bnrc�1X
i=0

(1� �n)
i "t�i + �n

bnrc�1X
i=0

(1� �n)
i �>X�n

+�n

bnrc�1X
i=0

(1� �n)
i �Xbnrc�i � �X

�>
�n:

Where (1� �n)
bnrc ! exp (�br), �n

Pbnrc�1
i=0 (1� �n)

i = 1 � (1� �n)
bnrc ! 1 � exp (�br),

and for any r 2 [0; 1], by Lemma 1 of Phillips (1987), as n!1,

n�1=2
bnrc�1X
i=0

(1� �n)
i "bnrc�i ) �"J�b;" (r) ; n�1=2

bnrc�1X
i=0

(1� �n)
i �Xbnrc�i � �X

�
) �

1=2
X J�b;X (r) :

Therefore for any r 2 [0; 1], as n!1, 1. follows by

n�1=2ybnrc = n�1=2
bnrc�1X
i=0

(1� �n)
i "bnrc�i + n

�1=2�n

bnrc�1X
i=0

(1� �n)
i �>X�n+op (1)

) �"J�b;" (r) + c>�X (1� exp (�br)) :
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2. �5. follow by

n�3=2
nX
t=1

yt�1 )
Z 1

0

�
�"J�b;" (r) + c>�X (1� exp (�br))

�
dr

= �"

Z 1

0

J�b;" (r) dr + c>�X
�Z 1

0

(1� exp (�br)) dr
�
;

n�2
nX
t=1

y2t�1 )
Z 1

0

�
�"J�b;" (r) + c>�X (1� exp (�br))

�2
dr

= �2"

Z 1

0

J 2
�b;" (r) dr + 2�"c

>�X

�Z 1

0

(1� exp (�br))J�b;" (r) dr
�

+
�
c>�X

�2�Z 1

0

(1� exp (�br))2 dr
�
;

n�1
nX
t=1

yt�1"t )
Z 1

0

�
�"J�b;" (r) + c>�X (1� exp (�br))

�
d�"W" (r)

= �2"

Z 1

0

J�b;" (r) dW" (r) + �"c
>�X

�Z 1

0

(1� exp (�br)) dW" (1)

�
;

n�1
nX
t=1

(Xt � �X) yt�1 )
Z 1

0

�
�"J�b;" (r) + c>�X (1� exp (�br))

�
d�

1=2
X WX (r)

= �"�
1=2
X

Z 1

0

J�b;" (r) dWX (r) + c
>�X�

1=2
X

�Z 1

0

(1� exp (�br)) dWX (r)

�
:

And for 6., by 2. and 5.,

n�3=2
nX
t=1

Xtyt�1 = n�3=2�X

nX
t=1

yt�1 +Op
�
n�1=2

�
) �"

�Z 1

0

J�b;" (r) dr
�
�X +

�Z 1

0

(1� exp (�br)) dr
�
�Xc

>�X :

Lemma 7 Suppose that Assumption 1 holds and n 2 �n (h; b; c). Then as n!1:

1. n�1=2�h
Pn

t=1 yt
A� N

�
c>�X ; b

�2�2"
�

2. n�1=2�h=2
Pn

t=1 yt�1"t
A� N

�
0; (2b)�1 �4"

�
.

3. n�1�h
Pn

t=1 y
2
t�1

p! (2b)�1 �2".

4. n�1=2�h=2
Pn

t=1 (Xt � �X) yt�1
A� N

�
0; (2b)�1 �2"�X

�
.
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5. n�1=2�h
Pn

t=1Xtyt�1
A� N

�
�Xc

>�X ; b
�2�2"�X�

>
X

�
:

Proof. Let

�t =
1X
i=0

(1� �n)
i "t�i; and �t =

1X
i=0

(1� �n)
i (Xt�i � �X) :

Then by Assumption 1, equation (1.2) can be written as:

yt =
1X
i=0

(1� �n)
i "t�i + �n

1X
i=0

(1� �n)
iX>

t�i�n

=
1X
i=0

(1� �n)
i "t�i + �n

1X
i=0

(1� �n)
i �>X�n + �n

1X
i=0

(1� �n)
i (Xt�i � �X)

> �n

= �>X�n + �t + �n�t�n:

By Theorem 2, Lemma 1 and Lemma 2 of Giraitis and Phillips (2006), as n!1,

n�1=2�h
nX
t=1

�t = b�1n�1=2 (1� �n)
nX
t=1

�t
A� N

�
0;
�2"
b2

�
;

n�1=2�h
nX
t=1

�t = b�1n�1=2 (1� �n)
nX
t=1

�t
A� N

�
0;
1

b2
�X

�
;

n�1=2�h=2
nX
t=1

�t�1"t =
�
2b� n�hb2

��1=2
n�1=2

�
1� �2n

�1=2 nX
t=1

�t�1"t
A� N

�
0;
�4"
2b

�
;

n�1=2�h=2
nX
t=1

�t�1"t =
�
2b� n�hb2

��1=2
n�1=2

�
1� �2n

�1=2 nX
t=1

�t�1"t
A� N

�
0;
�2"
2b
�X

�
;

n�1�h
nX
t=1

�2t�1 =
�
2b� n�hb2

��1
n�1

�
1� �2n

� nX
t=1

�2t�1
p! �2"
2b
; and

n�1�h
nX
t=1

�t�1�
>
t�1 =

�
2b� n�hb2

��1
n�1

�
1� �2n

� nX
t=1

�t�1�
>
t�1

p! 1

2b
�X :
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Therefore,

n�1=2�h
nX
t=1

yt = c>�X + n
�1=2�h

nX
t=1

�t + op (1)
A� N

�
c>�X ;

�2"
b2

�
;

n�1=2�h=2
nX
t=1

yt�1"t = n�1=2�h=2
nX
t=1

�t�1"t + op (1)
A� N

�
0;
�4"
2b

�
;

n�1�h
nX
t=1

y2t�1 = n�1�h
nX
t=1

�2t�1 + op (1)
p! �2"
2b
;

n�1=2�h=2
nX
t=1

(Xt � �X) yt�1 = n�1=2�h=2
nX
t=1

�t�1 (Xt � �X) + op (1)
A� N

�
0;
�2"
2b
�X

�
:

And for 5., by 1. and 4.,

n�1=2�h
nX
t=1

Xtyt�1 = n
�1=2�h�X

nX
t=1

yt�1 + op (1)
A� N

�
�Xc

>�X ;
�2"
b2
�X�

>
X

�
:

45



References

[1] Anatolyev, S., Gospodinov, N., 2011. Methods for Estimation and Inference in Modern

Econometrics. Chapman and Hall/CRC Press. Boca Raton, Florida, U.S.

[2] Andrews, D.W.K., 1994. Empirical process methods in econometrics. In: Engle, R.F.,

McFadden, D.L., (Eds.), Handbook of Econometrics, vol. IV. Elsevier, Amsterdam, The

Netherlands.

[3] Andrews, D.W.K., Cheng, X., 2012. Estimation and inference with weak, semi-strong,

and strong identi�cation. Econometrica 80, 2153�2211.

[4] Andrews, D.W.K., Cheng, X., 2013a. GMM estimation and uniform subvector inference

with possible identi�cation failure. Econometric Theory, forthcoming.

[5] Andrews, D.W.K., Cheng, X., 2013b. Maximum likelihood estimation and uniform in-

ference with sporadic identi�cation failure. Journal of Econometrics 173, 36�56.

[6] Andrews, D.W.K., Cheng, X., Guggenberger, P., 2011. Generic results for establishing

the asymptotic size of con�dence sets and tests. Cowles Foundation Discussion Paper

No. 1813.

[7] Bunzel, H., Enders, W., 2010. The Taylor rule and �opportunistic�monetary policy.

Journal of Money, Credit, and Banking 42, 931�949.

[8] Clarida, R., Galí, J., Gertler, M., 2000. Monetary policy rules and macroeconomic

stability: Theory and some evidence. Quarterly Journal of Economics 115, 147�180.

[9] Cochrane, J., 2011. Determinacy and identi�cation with Taylor rules. Journal of Political

Economy 119, 565�615.

[10] Croushore, D., Stark, T., 2001. A real-time data set for macroeconomists. Journal of

Econometrics 105, 111�130.

[11] Dufour, J.M., 1997. Some impossibility theorems in econometrics with applications to

structural and dynamic models. Econometrica 65, 1365�1387.

[12] Elliott, G., Rothenberg, T.J., Stock, J.H., 1996. E¢ cient tests of an autoregressive unit

root. Econometrica 64, 813�836.

[13] Galí, J., 2008. Monetary Policy, In�ation, and the Business Cycle: An Introduction to

the ew Keynesian Framework. Princeton University Press, Princeton, New Jersey, U.S.

46



[14] Giraitis, L., Phillips, P.C.B., 2006. Uniform limit theory for stationary autoregression.

Journal of Time Series Analysis 27, 51�60.

[15] Guerron-Quintana, P., Inoue, A., Kilian, L., 2009. Inference in weakly identi�ed DSGE

models. Working paper.

[16] Guggenberger, P., 2012. On the asymptotic size distortion of tests when instruments

locally violate the exogeneity assumption. Econometric Theory 28, 387�421.

[17] Hansen, B.E., 1999. The grid bootstrap and the autoregressive model. The Review of

Economics and Statistics 81, 594�607.

[18] Hansen, L.P., 1982. Large sample properties of generalized method of moments estima-

tors. Econometrica 50, 1029�1054.

[19] Hodrick, R., Prescott, E.C., 1997. Postwar U.S. business cycles: An empirical investi-

gation. Journal of Money, Credit, and Banking 29, 1�16.

[20] Inoue, A., Kilian, L., 2002. Bootstrapping autoregressive processes with possible unit

roots. Econometrica 70, 377�391.

[21] Inoue, A., Rossi, B., 2011. Testing for weak identi�cation in possibly nonlinear models.

Journal of Econometrics 161, 246�261.

[22] Jeganathan, P. 1991. On the asymptotic behavior of least-squares estimators in AR time

series with roots near the unit circle. Econometric Theory 7, 269�306.

[23] Krinsky, I., Robb, A.L., 1986. On approximating the statistical properties of elasticities.

Review of Economics and Statistics 68, 715�719.

[24] Li, J., 2013. Robust estimation and inference for jumps in noisy high frequency data: a

local-to-continuity theory for the pre-averaging method. Econometrica 81, 1673�1693.

[25] Mavroeidis, S., 2004. Weak identi�cation of forward-looking models in monetary eco-

nomics. Oxford Bulletin of Economics and Statistics 66, 609�635.

[26] Mavroeidis, S., 2010. Monetary policy rules and macroeconomic stability: Some new

evidence. American Economic Review 100, 491�503.

[27] McCloskey, A., 2011. Bonferroni-based size-correction for nonstandard testing problems.

Working paper.

47



[28] Mikusheva, A., 2007. Uniform inference in autoregressive models. Econometrica 75,

1411�1452.

[29] Mikusheva, A., 2012. One-dimensional inference in autoregressive models with the po-

tential presence of a unit root. Econometrica 80, 173�212.

[30] Nelson, C.R., Startz, R., 2007. The zero-information-limit condition and spurious infer-

ence in weakly identi�ed models. Journal of Econometrics 138, 47�62.

[31] Newey, W. K., McFadden, D., 1994. Large sample estimation and hypothesis testing.

In: Engle, R.F., McFadden, D.L., (Eds.), Handbook of Econometrics, vol. IV. Elsevier,

Amsterdam, The Netherlands.

[32] Nikolsko-Rzhevskyy, A., 2011. Monetary policy estimation in real time: forward-looking

Taylor rules without forward-looking data. Journal of Money, Credit and Banking 43,

871�897.

[33] Nikolsko-Rzhevskyy, A., Papell, D.H., 2012. Taylor rules and the great in�ation. Journal

of Macroeconomics 34, 903�918

[34] Orphanides, A., 2001. Monetary policy rules based on real-time-data. American Eco-

nomic Review 91, 964�985.

[35] Orphanides, A., 2004. Monetary policy rules, macroeconomic stability, and in�ation: A

view from the trenches. Journal of Money, Credit, and Banking 36, 151�175.

[36] Phillips, P.C.B., 1987. Towards a uni�ed asymptotic theory for autoregression. Bio-

metrika 74, 535�547.

[37] Phillips, P.C.B., Magdalinos, T., 2007. Limit theory for moderate deviations from a unit

root. Journal of Econometrics 136, 115�130.

[38] Stock, J.H., 1991. Con�dence intervals for the largest autoregressive root in U.S. macro-

economic time series. Journal of monetary economics 28, 435�459.

[39] Taylor, J.B., 1993. Discretion versus policy rules in practice. Carnegie-Rochester Con-

ference Series on Public Policy 39, 195�214.

[40] van der Meer, T., Pap, G., van Zuijlen, M.C.A., 1999. Asymptotic inference for nearly

unstable AR (p) processes. Econometric Theory 15, 184�217.

[41] van der Vaart, A.W., Wellner, L.A., 1996. Weak convergence and empirical processes.

New York: Springer.

48



[42] White, H.L., 2001. Asymptotic theory for econometricians, revised edition. Orlando,

FL: Academic Press.

[43] Woodford, M., 2003. Interest and Prices: Foundations of a Theory of Monetary Policy.

Princeton, NJ: Princeton University Press.

[44] Woutersen, T., Ham, J.C., 2013. Calculating con�dence intervals for continuous and

discontinuous functions of parameters. Working paper.

49



Table 1: NLS estimates for the forecast-based monetary policy reaction function
� _p �x �� � �2" R2

k = 0 0.895 1.171 2.359 0.109 0.198 0.957
(0.325) (0.306) (1.073) (0.030)

k = 1 1.491 0.985 0.765 0.194 0.160 0.965
(0.211) (0.148) (0.654) (0.034)

In parentheses are estimates of standard errors according to the standard asymptotic
theory as in Theorem 1.
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Figure 1: Finite-sample and asymptotic densities of n
�b�n � �n�, �0;n = �1;n = 2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), n=100, βn=0.02, π0,n=π1,n=2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), n=100, βn=0.05, π0,n=π1,n=2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), n=100, βn=0.1, π0,n=π1,n=2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), Asym., b=2, c0=c1=0.2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), Asym., b=5, c0=c1=0.2

10 5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n(βn
^ βn), Asym., b=10, c0=c1=0.2

The �rst and rows are respectively the simulated �nite-sample densities and the asymptotic
densities in Example 1.

Figure 2: Finite-sample and asymptotic densities of n�1=2 (b�1;n � �1;n), �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 1.
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Figure 3: Finite-sample and resampling densities of n
�b�n � �n�, �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
resampling densities in Example 1.

Figure 4: Finite-sample and resampling densities of n�1=2 (b�1;n � �1;n), �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
resampling densities in Example 1.
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Figure 5: Finite-sample and asymptotic densities of n
�b�n � �n�, �0;n = �1;n = 0
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The �rst and rows are respectively the simulated �nite-sample densities and the asymptotic
densities in Example 2.

Figure 6: Finite-sample and asymptotic densities of n�1=2 (b�1;n � �1;n), �0;n = �1;n = 0
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The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 2.
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Figure 7: Finite-sample and asymptotic densities of Tn for H0 : � = �n, �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 3.

Figure 8: Finite-sample and asymptotic densities of Tn for H0 : �1 = �1;n, �0;n = �1;n = 2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , n=100, βn=0.02, π0,n=π1,n=2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , n=100, βn=0.05, π0,n=π1,n=2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , n=100, βn=0.1, π0,n=π1,n=2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , Asym., b=2, c0=c1=0.2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , Asym., b=5, c0=c1=0.2

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Tn, H0:π1=π1,n , Asym., b=10, c0=c1=0.2

The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 3.
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Figure 9: Finite-sample and asymptotic densities of Wn for H0 : � = �n, �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 3.

Figure 10: Finite-sample and asymptotic densities of Wn for H0 : �1 = �1;n, �0;n = �1;n = 2
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The �rst and second rows are respectively the simulated �nite-sample densities and the
asymptotic densities in Example 3.
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Figure 11: Coverage probabilities of CSL;LFn , CSL;Pn and �2 (1) CS for �1;n = 2, 1� � = 0:8
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The �rst to third panels in the �rst row are respectively simulated coverage probabilities of
the least-favorable con�dence sets CSL;LFn , the projection-based con�dence sets CSL;Pn and
the standard con�dence sets based on the �2 (1) distribution of Example 4. The �rst to
third panels in the second row are coverage probabilities of CSL;LFn , CSL;Pn and �2 (1) CS
with �0;n = 0, 1, and 2.
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Figure 12: Coverage probabilities of CSL;LFn , CSL;Pn and �2 (1) CS for �1;n = 2, 1� � = 0:9
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The �rst to third panels in the �rst row are respectively simulated coverage probabilities of
the least-favorable con�dence sets CSL;LFn , the projection-based con�dence sets CSL;Pn and
the standard con�dence sets based on the �2 (1) distribution of Example 4. The �rst to
third panels in the second row are coverage probabilities of CSL;LFn , CSL;Pn and �2 (1) CS
with �0;n = 0, 1, and 2.
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Figure 13: Federal funds target rates, in�ations and output gaps

1990 1995 2000 2005
0

2

4

6

8

10
Effective Federal Funds Rates

P
er

ce
nt

1990 1995 2000 2005
2

0

2

4

6

8

10

12
CPI Inflation (T)

A
nn

ua
liz

ed
 R

at
e 

of
 C

ha
ng

e

Actual Inflation
Greenbook Projections

1990 1995 2000 2005
6

4

2

0

2

4
Output Gap (T)

P
er

ce
nt

Actual Output Gap
Greenbook Projections

1990 1995 2000 2005
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 104 Potential and Actual GDP

B
illi

on
s 

of
 C

ha
in

ed
 2

00
5 

D
ol

la
rs

Actual Real GDP
Potential Real GDP

1990 1995 2000 2005
2

0

2

4

6

8

10

12
CPI Inflation (T+1)

A
nn

ua
liz

ed
 R

at
e 

of
 C

ha
ng

e
Actual Inflation
Greenbook Projections

1990 1995 2000 2005
6

4

2

0

2

4
Output Gap (T+1)

P
er

ce
nt

Actual Output Gap
Greenbook Projections

The e¤ective federal funds target rates are the monthly averages of the last month in each
quarter. The in�ation rates, potential GDP and actual GDP are from the Federal Reserve
Economic Data (FRED R) in Federal Reserve Bank of St. Louis. The Greenbook
projections are from the Real-Time Data Research Center in Federal Reserve Bank of
Philadelphia. The dates correspond to the publication dates of Greenbooks.

Figure 14: Least-favorable CSs for the reaction coe¢ cients

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=0, 1 α=0.8

χ2(2) CS
CS

n
L,LF

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=0, 1 α=0.9

χ2(2) CS
CS

n
L,LF

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=0, 1 α=0.95

χ2(2) CS
CS

n
L,LF

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=1, 1 α=0.8

χ2(2) CS
CS

n
L,LF

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=1, 1 α=0.9

χ2(2) CS
CS

n
L,LF

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,LF, k=1, 1 α=0.95

χ2(2) CS
CS

n
L,LF

The �rst and second rows are respectively for k = 0 and 1. The �rst to third panels are
respectively for 1� � = 0:8, 0:9 and 0:95. The dot line denotes the determinacy region
DR = f� _p > 1; �x > 0g.
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Figure 15: Projection-based CSs for the reaction coe¢ cients, k = 1

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=0, 1 α=0.8

χ2(2) CS
CS

n
L,P

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=0, 1 α=0.9

χ2(2) CS
CS

n
L,P

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=0, 1 α=0.95

χ2(2) CS
CS

n
L,P

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=1, 1 α=0.8

χ2(2) CS
CS

n
L,P

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=1 ,1 α=0.9

χ2(2) CS
CS

n
L,P

0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

π
x
 (output gap)

π p.  (
in

fla
tio

n)

CSn
L,P, k=1, 1 α=0.95

χ2(2) CS
CS

n
L,P

The �rst and second rows are respectively for k = 0 and 1. The �rst to third panels are
respectively for 1� � = 0:8, 0:9 and 0:95. The dot line denotes the determinacy region
DR = f� _p > 1; �x > 0g.
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