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Abstract

An individual with present bias is one who is particularly impatient for consumption

now at the expense of consumption later, but less impatient between any two dates in

the future. A hypothesis for the cause of present bias is that immediate consumption

is subject to temptation, whereas future consumption is not. Under this hypothesis

an individual’s level of present bias is a combination of what she is tempted to do and

the amount of self-control she uses to avoid succumbing to this temptation. I show

that given a level of present bias what is tempting and how much self-control is used

is not always identified: it could be that she is tempted to consume everything she

has available right now, but she controls herself; that her temptation is more mild and

she succumbs to it completely; or something in between. I then present an algorithm

that is able to disentangle this combination by eliciting the maximum price she will

pay for commitment and her present bias. This works because for a given level of

present-bias commitment becomes more valuable as the effort required to control one’s

self increases.
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1 Introduction

An individual who exhibits a larger discount rate between immediate consumption and future

consumption than she does between consumption in two similarly separated future dates is

said to be present biased. Present bias has been correlated with a variety of behaviors,

from holding credit card debt and microfinance loan uptake, to scholastic performance1.

A hypothesis for the cause of present bias is that immediate consumption is subject to

temptation, whereas choices about future consumption are not2. Under this hypothesis an

individual’s observed level of present bias is a combination of what she is tempted to do and

the amount of self-control she uses to avoid succumbing to this temptation. I show that this

combination is not well defined: it could be that she is tempted to consume everything she

has available right now, but she successfully controls herself; or that her temptation is more

mild, but that she succumbs to it completely; or something in between these two extremes.

Temptation that puts a greater weight on the future will be more mild than temptation

that puts less3. A researcher who only elicits an individual’s present bias will not know

if it is myopic temptation and strong self-control or mild temptation and weak self-control

that is correlated with other behavior, for example excessive credit card debt or opting into

commitment savings devices. This knowledge has an effect on the types of policies that can

be implemented. For instance, if temptation is myopic enough debt repayment contracts

cannot be contingent on unobservable income. That is, a contract cannot specify that when

an individual’s realized income is above a certain level she must pay, and when it is below

that level she doesn’t have to. This is because when temptation is myopic the individual

is always tempted to spend as much as possible, so she will always be tempted to claim

that she received whatever amount of income allows her to spend the most now, though

1See literature reviews by Frederick et al. (2002); Bryan et al. (2010)
2Meier and Sprenger (2010); Ashraf et al. (2006); Bauer et al. (2012); Laibson (1997)
3Experiments in Trope and Fishbach (2000) and citations within present evidence that temptation is not

totally myopic.

2



she may not actually succumb to this temptation. However, when temptation is farsighted

separating contracts are feasible because the individual is not always tempted to consume

as much as possible. Furthermore, when temptation is farsighted levying fees, such as early

withdrawal fees for 401Ks, or charging high interest rates can make borrowing now less

tempting. If this is the case then high interest rates on credit cards could increase welfare,

while if temptation is myopic high interest rates are only predatory and decrease welfare.

Additionally, if temptation is very myopic then commitment devices like credit card limits

or mandatory payments do not have to be very precise since limiting any extreme behavior

is helpful and easy to do. While if it is more farsighted then commitment must be more

targeted so that it actually eliminates some tempting behavior4.

While there is evidence that the ability to control oneself can be depleted5, the identifica-

tion algorithms presented here will be able to produce the first evidence about whether or not

people find the actual exertion of self-control to be costly. Costly self-control allows for mod-

els of time-consistent agents who value commitment6, or dual-self models with a long-term

self with stable preferences7. Time consistency results in straightforward welfare analysis

since there is only one agent to focus on, while it is more difficult with time-inconsistent

preferences because it is unclear which set of preferences matter. In addition, when self-

control is costly, eliminating tempting options that are never chosen is always beneficial

because it reduces the amount of self-control that is exerted. However, if self-control is not

costly, eliminating tempting options is valued only if they will be chosen when available.

This means that only commitments that change behavior, binding commitments, are useful

when self-control is not costly.

The common present-bias identification algorithm uses the βδ model of quasi-hyperbolic

4For a more complete discussion of how the myopia of temptation affects borrowing and saving behavior
see Groves (2013)

5In the psychology literature this is referred to as willpower depletion. See Baumeister et al. (1998, 2000).
6As in Gul and Pesendorfer (2001); Noor (2007); Noor and Takeoka (2010); Dekel et al. (2009).
7Fudenberg and Levine (2006, 2011)
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discounting. It presents an individual with a series of choices between a smaller reward, $x,

at date t and a larger reward, $y, at date t + τ , where $y is varied and $x is kept constant

(or vice-versa). The individual makes decisions about these trade-offs in at least two time

frames: t0 = 0 (now) and τ days in the future; and for t1 > 0 and T = τ + t1 days in

the future. The combination of discount factor and present bias, βδ, are measured with the

future time frame. Present bias, β, is an effect between immediate and future rewards, so

the decisions in the immediate time frame disentangle β and the discount factor, δ. The

individual’s present bias is a measure of how much her immediate decision misaligns with

her normative preferences.

Temptation and self-control can be disentangled by eliciting the maximum price the

individual is willing to pay for commitment: a high price means that her temptation is myopic

but she controls herself, and a lower price means that her temptation is more farsighted but

she is less successful in controlling herself. When temptation can be farsighted, and the

effectiveness of self-control is linear in utilities, as in Gul and Pesendorfer (2001, 2004, 2005);

Krusell et al. (2010), more data is needed to fully identify a model of temptation and self-

control than is produced using the common present-bias algorithm. This is because the

effectiveness of self-control and the myopia of temptation can be modulated in such a way

that while the individual is observed to have a present bias of β? she may have been tempted

to consume everything but controlled herself, or her temptation was more mild but she

succumbed completely to it. However, given a particular β? the individual must exert more

self-control if she is tempted to consume everything than if her temptation is more mild.

Therefore commitment will be more valuable the more myopic her temptation is because

she has a greater amount of self-control to avoid exerting. The new algorithm would run

as follows: as before, first the individual would choose between rewards in the present and

future time frames; the future frame is the commitment decision. Then the maximum price
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she would be willing to pay to enforce this commitment is elicited8. This algorithm will work

well if we assume that utility is linear9, which has been argued to be the case with most

experimental rewards as in Rabin (2000).

If the utility function is nonlinear then its curvature needs to be estimated as well. This is

done by inducing the individual to reveal her certainty equivalents for multiple lotteries that

pay off immediately. The researcher can then measure the curvature of the utility functions

using changes in the individual’s decisions due to changes in reward levels and distributions.

Given the additional steps required to estimate a nonlinear utility function, one may

be tempted to assume a linear utility function and use the simpler identification algorithm

with the goal of estimating “bounds” on the parameter values. Unfortunately this will

not always work since the linear approximation of a variety of popular utility functions

will overestimate or underestimate parameter values depending on reward levels and other

parameter values. In fact, this approach will not work even in the absence of temptation

and self-control since the linear identification algorithm results in indifference conditions for

levels of utility, not marginal utilities. The ratio of the utility level for consumption today

over the utility level for consumption in the future will define the discount factor. Unlike the

ratio of marginal utilities, the ratio of utility levels is not necessarily monotonic in wealth,

even if the true utility function is continuous and concave. Introducing temptation and

self-control complicate matters further because there are additional parameters to estimate.

These concerns are analyzed and discussed in more detail in Section 3.3.

The identification algorithms presented in this paper are related to those used in An-

dersen et al. (2008) and Andreoni and Sprenger (2012). Neither attempt to estimate both

temptation and self-control, only present bias. Bucciol (2012) estimates a model of myopic

8A price would be drawn at random and she would have to pay only if it were weakly less than the one
she stated.

9Linear utility is assumed in a number of experiments, such as Ahlbrecht and Weber (1997); Coller and
Williams (1999); Thaler (1981).
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temptation and costly self-control using decisions about liquid and illiquid asset holdings

and a life cycle consumption-savings model. He finds a small but significant strength of

temptation. In other words, while individuals are tempted to spend everything they have,

this temptation is not very strong and is relatively easy to avoid. However, since farsighted

self-control is not analyzed it could be instead that people are tempted to do something much

less extreme but are overcome by this temptation. Ameriks et al. (2007) use a survey with

hypothetical questions about how the individual would allocate ten certificates for a “dream

restaurant night” over the span of two years. The questions ask for the individual’s ideal

allocation, how she thinks she would actually allocate the certificates, and how she would be

most tempted to allocate the certificates. The answers to the questions are then correlated

to individual characteristics such as age, wealth, and education. Unfortunately the data for

the survey participants’ answers about what they were most tempted to do is not presented.

If it were this would give evidence for or against the idea of farsighted temptation.

Models of temptation and self-control can be split into two categories depending on how

they define what is tempting. First there are those in which only immediate consumption

is tempting and the individual is always tempted to consume everything she has available

today10. Then there are models in which temptation is more mild11. This accomplished by

allowing future consumption to affect temptation now. This paper the model of self-control

preferences from Gul and Pesendorfer (2005). This model is a generalized version of the

model of temptation and costly self-control presented in Krusell et al. (2010) and Gul and

Pesendorfer (2001), and allows for both farsighted and myopic temptation.

The remainder of this paper is organized as follows: in Section 2 the βδ model and the

Gul and Pesendorfer (2005) model are described. In Section 3 the linear utility algorithms

and comparative statics are then presented, followed by the nonlinear utility algorithm and

10Gul and Pesendorfer (2001, 2004); Fudenberg and Levine (2006, 2012)
11Noor (2007); Krusell et al. (2010). The βδ model falls in this second camp if interpreted a model of

overwhelming temptation.
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comparative statics, and then a comparison of the two algorithms. Section 4 discusses and

concludes.

2 The Models

The “individual” is the subject of the experiment and is the only decision maker.

There are three periods: 0, 1, and 2. In period 0 the individual may have the opportunity

to make commitment choices about consuming c1 in period 1 or c2 in period 2. When there

is a price for this commitment to be enforced she will pay it in period 0. I assume that the

individual has some w, in period 0 so that she can afford to pay this price12. If her period 0

commitment choice is not binding or if she does not make a commitment decision then she

will make her consumption decisions in period 1.

The βδ model describes an individual with time inconsistent preferences who is particu-

larly impatient for consumption now at the expense of consumption later, but less impatient

between any two dates in the future. This is modeled with a utility function u : R2
+ → R

that is increasing, continuous, and concave. The individual’s utility in period 0 is

U0 = βδ [u(c1) + δu(c2)] .

Her utility in period 1 is

U1 = u(c1) + βδu(c2).

β, δ ∈ [0, 1]. It is the additional impatience, β, of the individual’s future self over her current

self that will lead to a preference for commitment. The magnitude of her present-bias, β,

is a measure of how much the individual’s period 0 and period 1 preferences misalign. For

instance, if she can commit to a particular period 1,2 consumption path in period 0 she will

12w would most likely be a show-up fee paid to the individual.
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maximize U0, while if she cannot commit she will maximize U1 in period 1. Because u(c)

is increasing and continuous, in period 2 she will consume everything that is available. A

specific observation of an individual’s present bias will be denoted by β?.

The Self-Control (SC) model is a generalization of the models presented in Gul and

Pesendorfer (2001) and Krusell et al. (2010). It describes an individual with time-consistent

preferences that exhibit temptation and costly self-control. U : R2
+ → R is her time-separable

normative utility. U(c1, c2) = u(c1) + δu(c2), where u : R → R is continuous, concave, and

increasing. δ ∈ [0, 1].

V : R2
+ → R is her temptation utility. V (c1, c2) = v(c1) + βδv(c2), and v : R → R is

assumed to be continuous and increasing. β ∈ [0, 1]. A temptation utility that depends only

on the immediate period’s consumption, β = 0, is a model of myopic temptation. When

β > 0 then temptation is farsighted.

γ (maxc̃1,c̃2 V (c̃1, c̃2)− V (c1, c2)) is the cost of self-control and is always positive unless

ci = c̃i, in which case it is zero. The temptation utilities are evaluated at the choice made by

the individual, {c1, c2}, and the most tempting option available, {c̃1, c̃2} = arg maxc̃1,c̃2 V (c̃1, c̃2).

In period 0 she chooses the set of options, C, available to her in period 1. This is her

commitment decision. Contingent on the available options her period 1 utility will be:

U1 = U(c1, c2)− γ
(

max
{c̃1,c̃2}∈C

V (c̃1, c̃2)− V (c1, c2)

)
.

= u(c1) + δu(c2)− γ
([

max
{c̃1,c̃2}∈C

v(c̃1) + βδv(c̃2)

]
− v(c1) + βδv(c2)

)

such that {c1, c2} ∈ C and {c̃1, c̃2} ∈ C. If commitment is completely binding then C =

{c1, c2} and U1 = u(c1) + δu(c2).

In period 1 the individual will take her most tempting option13, {c̃1, c̃2}, as given and

13Technically the Gul and Pesendorfer (2005) model only suggests that the individual behaves in a par-
ticular way in period 1. However, in this paper I assume that this is how the individual actually behaves.
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maximize the combination of normative and temptation utilities:

max
{c1,c2}∈C

U1 = max
{c1,c2}∈C

[U(c1, c2) + γV (c1, c2)]

As γ goes to zero consumption is determined by the commitment utility. As γ increases

towards infinity the the individual loses her ability to control herself in periods 1 and 2

and the temptation utility determines consumption decisions. γ can be interpreted as the

effectiveness of self-control or the strength of temptation.

A preference for commitment is driven by the disagreement between the optimal levels of

consumption for the normative and temptation utilities and the resulting cost of self-control.

Commitment can eliminate tempting options. For instance, as shown above, if the individual

commits to a particular consumption flow, {c1, c2}, then this reduces the cost of self-control

to zero and U1 = u(c1) + δu(c2).

In all the identification algorithms presented in this paper the individual will be choosing

between consuming c in period 1 or Rc in period 2. The rate of return for which normative

utility is indifferent between c and Rc will be denoted Rfb, where the superscript fb refers

to “first best”, and is defined by u(c) = δu(Rfbc). The most tempting rate of return,

R̃, is defined by v(c) = βδv(R̃c). If β = 0 then R̃ = Rmax. The rate of return the

individual will choose in period 1 with no prior commitment, R, is defined by u(c) +γv(c) =

δu(Rc) + βδγv(Rc). As γ →∞ then R→ R̃, and as γ → 0 then R→ Rfb. These equations

are derived explicitly in the following section.

The individual is assumed to have full information whenever she is presented with any

of the algorithms presented in this paper.
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3 Identification

In the first subsection I use the simplifying assumption of linear utility to illustrate the

identification problem. First I present the original identification algorithm for the βδ model

and then the new SC identification algorithm. The subsequent section introduces the addi-

tional steps that are necessary so that the SC identification algorithm can estimate nonlinear

utilities.

3.1 Linear Utility

When utility is linear the βδ model reduces to

U0 = β [c1 + δc2]

U1 = c1 + βδc2.

In order to identify the βδ model with linear utility the individual makes decisions defined

by the following algorithm, where F [Rmin, Rmax] denotes any continuous distribution with

a lower bound of Rmin and an upper bound of Rmax.

Algorithm 1.

1. Period 0: choose the Rfb for which you are indifferent between a reward c in period 1

and reward Rfbc in period 2.

(a) After Rfb is chosen a random R? ∼ F [Rmin, Rmax] is drawn.

(b) If R? ≥ Rfb then the individual receives R?c in period 2, otherwise she receives c

in period 1.

2. Period 1: choose the R for which you are indifferent between a reward c now and

reward Rc in period 1.
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(a) After R is chosen another R? ∼ F [Rmin, R
max] is drawn. If R? ≥ R then the

individual receives R?c in period 2, otherwise she receives c in period 1.

Algorithm 1 presents the individual with two choices. First, in period 0 the individual

must choose the Rfb that maximizes her expected utility:

max
Rfb

c

Rfbˆ

Rmin

f(R)dR + δc

Rmaxˆ

Rfb

Rf(R)dR

This is the commitment choice. Then in period 1 she chooses the R that maximizes her

period 1 expected utility:

max
R

c

R̂

Rmin

f(R)dR + βδc

Rmaxˆ

R

Rf(R)dR

These two maximization problems result in two different linear first order conditions which

identify the two unknowns: β and δ.

Period 0: Period 1 :

βc = βδRfbc c = βδRc

⇒ δ = 1
Rfb

⇒ β? = Rfb

R

For the linear SC model, in period 0 the individual chooses the Rfb that maximizes her

expected utility. Given that choosing Rfb fully restricts her choice in period 1 her cost of

self-control will be zero.

max
Rfb
U1 = max

Rfb

Rfbˆ

Rmin

cf(R)dR + δ

Rmaxˆ

Rfb

Rcf(R)dR

If she does not commit in period 0 and must choose the rate of return in period 1, then her
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choice is subject to a cost of self-control:

max
R
U1 = max

R

(1 + γ)

R̂

Rmin

cf(R)dR + δ(1 + γβ)

Rmaxˆ

R

Rcf(R)dR

− γ

 R̂̃

Rmin

cf(R)dR + βδ

Rmaxˆ

R̃

Rcf(R)dR




If γ > 0 and β < 1 then R > Rfb. Costly self-control introduces a third variable into the

mix: the strength of temptation, γ. Identification is not a problem if temptation is myopic,

since in this case β = 0 and there are just two parameters to identify: δ and γ. However, in

the case of farsighted temptation β > 0 a third equation is necessary for identification.

Theorem 1. The SC model with farsighted temptation,

U(c1, c2) = c1 + δc2

V (c1, c2) = γ (c1 + βδc2)

cannot be fully identified using Algorithm 1: δ = 1
Rfb

, β ∈
[
0, R

fb

R

)
, γ ∈

[
R−Rfb
Rfb

,∞
)

.

When temptation is farsighted the myopia of the individual’s temptation, β, can be

traded off against the effectiveness of her self-control, γ, to keep her observed present bias,

β?, constant. Therefore the algorithm needs at least one additional step to disentangle these

two parameters. Algorithm 2 includes a step to elicit the maximum price the individual is

willing to pay for her commitment choice in period 0 to be enforced in period 1, instead of

waiting until period 1 arrives and making the decision then. Theorem 2 proves that this is

sufficient to fully identify the SC model with farsighted temptation.

Algorithm 2.

1. Period 0:
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(a) Choose the Rfb for which you are indifferent between a reward c at period 1 and

reward Rfbc at period 2.

(b) Choose the maximum price, p, that you are willing to pay to now to have Rfb

enforced instead of R.

(c) After Rfb and p are chosen a random R? ∼ F [Rmin, Rmax] and p? ∼ P [0, pmax]

are drawn.

i. If p? ≤ p and R? ≥ Rfb the individual receives R?c in period 2.

ii. If p? ≤ p and R? < Rfb the individual receives c in period 1.

iii. If p? > p the individual continues on to period 1 with no commitment en-

forced.

2. Period 1:

(a) Choose the R for which you are indifferent between a reward c now and reward

Rc at period 2.

i. After R is chosen another R? ∼ F [Rmin, R
max] is drawn. If R? ≥ R the

individual receives R?c in period 2, else she receives c in period 1.

Theorem 2. Algorithm 2 fully identifies the farsighted SC model.

• Step 1(b) is necessary only if β > 0.

As temptation becomes more myopic the individual must use more self-control to obtain a

particular level of present bias. Commitment allows her to avoid exerting costly self-control,

so given a particular level of observed present-bias, the value of commitment is increasing

with the level of the myopia of temptation. All else equal, if the researcher observes a

higher willingness to pay for commitment then she will be able to conclude that individual’s

temptation is more myopic, and her self-control is more effective, than an individual with a

lower willingness to pay for commitment.
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3.1.1 Linear comparative statics

In this section I assume a uniform distribution is used for the reward multiplier R so that

comparative statics with respect to the reward and the range of the multiplier can be found

and simulated. I use the uniform distribution because it is straightforward to derive the

comparative statics, and it also seems likely to be the least confusing and most intuitive

distribution for subjects. I also assume without loss of generality that Rmin = 0. Given

these assumptions the researcher can modulate Rmax and c to affect the prices individuals

are willing to pay for commitment.

p =
cδ

Rmax −Rmin

 R̂

Rfb

[δR− 1] dR + γ

R̂̃

R

[1− βδR] dR

+ w (1)

The first integral in equation 1 is the cost from making a suboptimal choice, while the second

integral is the net cost of self-control without commitment. These are the two costs that are

incurred when the individual is not able to commit to Rfb, and so the maximum price she

is willing to pay to commit is just the addition of these two costs. This equation is derived

in full in the appendix.

The observed level of present bias is β? ≡ 1
δR

.

Theorem 3. The the price for commitment is increasing in the maximum possible reward

multiplier, Rmax, when temptation is myopic, β = 0, but is decreasing when β → β?. The

price for commitment is increasing in the reward, c.
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Proof. Define ζ ≡ p(β = 0)− limβ→β? p(β).

ζ = γcδ
Rmax −R

Rmax −Rmin

∂ζ

∂c
= γδ

Rmax −R
Rmax −Rmin

> 0

∂ζ

∂Rmax

= γcδ
Rmax

Rmax −Rmin

− γcδ Rmax −R
(Rmax −Rmin)2

> 0

As one can see from equation 1, c works as a linear scaling factor. Changes in Rmax

can have both positive and negative effects on any particular p(β) depending on the myopia

of temptation. This is illustrated in Figure 1. If Rmax > 1
β?δ

there will exist a β′ such

that for β ≤ β′(Rmax) the most tempting option will be to choose Rmax, and for more

farsighted temptation the most tempting option will be to choose a rate of return less than

Rmax. Increasing Rmax will increase the range in which self-control must be exercised for

all β ≤ β′, making commitment more valuable to the individual. Additionally, increasing

Rmax spreads the distribution, effectively putting more weight on large extreme values for

R, and less on the small extreme values. The combination of these two effects mean that

for β ≤ β′ increasing Rmax increases the price the individual is willing to pay, while for

more farsighted temptation it will decrease the value of commitment since it decreases the

likelihood a suboptimal choice is realized and reduces the weight on the area in which self-

control must be exercised: between Rmin and R̃.
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Figure 1: p as a function of β and Rmax. β = 0.8, δ = 0.99.

If the researcher just wants to test the hypothesis β = 0 then it is best to make Rmax and

c as large as possible. On the other hand, if the researcher would like to estimate β more

precisely then an intermediate value for Rmax would be best, again maximizing c.

3.2 Nonlinear Utility

Concave normative utility introduces the possibility of risk aversion and decreasing marginal

utility, and the nonlinearity will affect the estimates of the parameter values if not taken into

account. Nonlinear temptation utility can affect both what is tempting and how tempting

it is depending on the payoffs. When temptation utility is convex the individual is always

most tempted to consume everything available in a single period, and as the payoff in that

period increases so does the strength of this temptation. Concave temptation utility results

in a decreasing strength of temptation as payoffs increase, and it also allows for temptation

that is more mild, in which the individual is not necessarily tempted to consume everything

in just one period. One consequence of this difference is that when temptation is concave
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and farsighted the individual may find different options more or less tempting depending

on the state of the world. For instance, if the individual receives a negative income shock

she may be tempted to borrow, while if she receives a positive income shock she may be

tempted to save (though not as much as her normative preferences would like). This means

that state dependent contracts can be desirable when temptation is concave and farsighted.

However, if temptation is convex and/or myopic the individual is always tempted to consume

everything available, so state dependent contracts will not be useful in reducing the amount

of self-control that the individual exerts.

When the normative and temptation utilities are nonlinear, observations for several dif-

ferent levels of reward are necessary to measure the curvature of the function. However, if the

individual only makes fully binding commitment decisions then only the normative utility

function will be estimated. This is because fully binding commitment restricts the individ-

ual’s choice set, reducing her menu of options to a subset in which the most tempting options

have been eliminated: her choice will be from the boundary of the set so no self-control is

necessary. Therefore, to observe the curvature of both the normative and temptation utilities

there should be no commitment in place during the decision. Furthermore, if the normative

utility function is CRRA and the temptation utility function is an affine transformation of

this function then intertemporal decisions, even without commitment and at a variety of

reward levels, will not be able to identify the curvature. Her intertemporal trade-off decision

when her utilities are CRRA is to choose the R such that

(1 + γ)
c1−α

1− α
= δ(1 + γβ)

(Rc)1−α

1− α

R is not going to be a function of c, so changing c will not allow the researcher to estimate

α. Eliciting the individual’s certainty equivalent for a lottery, or lotteries, all over immediate

payoffs avoids this problem. The same continuous price list procedure used in the algorithms
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above can be used to elicit her certainty equivalent. Then her decision will be to choose the

x such that

maxx
´ x
xmin

´ zmax
zmin

[u(z) + γv(z)] f(z)dzf(x)dx+
´ xmax
x

[u(x) + γv(x)] f(x)dx

−γ
[
maxx̃

´ x̃
xmin

´ zmax
zmin

v(z)f(z)dzf(x)dx+
´ xmax
x̃

v(x)f(x)dx
]

Which results in the following equality:

u(x) + γv(x) =

zmaxˆ

zmin

[u(z) + γv(z)] f(z)dz

This will allow the researcher to estimate the utility functions u(·) and v(·). Algorithm 3

puts all of these steps together.

Algorithm 3.

1. Period 0:

(a) ** Choose the payoff, x, and the gamble, Z [zmin, zmax], that you are indifferent

between.

i. x? ∼ X [xmin, xmax] is drawn. The individual receives x? if x? ≥ x, else she

receives z ∼ Z [zmin, zmax]. Either reward is received immediately.

(b) Given c, choose the Rfb for which you are indifferent between a reward c in period

1 and reward Rfbc in period 2.

(c) * Choose the maximum price p you are willing to pay to have Rfb implemented.

(d) After Rfb and p are chosen a random R? ∼ F [Rmin, Rmax] and p? ∼ P [0, pmax]

are drawn.

i. If p? ≤ p and R? ≥ Rfb the individual receives R?c in period 2.
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ii. If p? ≤ p and R? < Rfb the individual receives c in period 1.

iii. If p? > p the individual continues on to period 1 with no commitment en-

forced.

2. Period 1:

(a) Choose the R for which you are indifferent between a reward c now and reward

Rc in period 2.

i. After R is chosen R? ∼ F [Rmin, R
max] is drawn. If R? ≥ R then the individ-

ual receives R?c in period 2, else she receives c in period 1.

The following theorem proves that this algorithm is sufficient to identify the SC model.

Theorem 4. Algorithm 1 identifies the SC model.

• Step 1(c) is necessary only if

U(c, Rc) = u(c) + δu(Rc)

V (c, Rc) = γ [u(c) + βδu(Rc)]

As in the linear setting, the price an individual is willing to pay for commitment has a

monotonic relationship with respect to β and γ. Coupled with the two intertemporal choices

this will allow the researcher to identify the three parameters β, γ, and δ.

Initially, the version of the SC model where V (c, Rc) = γ [u(c) + βδu(Rc)] may seem

uninteresting. However, it is the only version of the SC model that can approximate the βδ

model to any level of precision (approaching it exactly in the limit as γ → ∞). Because of

this attribute, and the fact that it has only one nonlinear function, it has been used in a
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number of theoretical and empirical papers14. Finally, again because of these characteristics,

it is a good first candidate to use to measure the departure of behavior from the popular βδ

model.

3.2.1 Nonlinear comparative statics

As in the linear setting, I assume here a uniform distribution for R, with Rmin = 0. In addi-

tion I use a CRRA utility function because it is commonly used and has a single parameter

that determines the function’s curvature. This results in the following equation for the price

for commitment:

p = c

 δ

Rmax −Rmin

ˆ R

Rfb
δ
(
R1−α − 1

)
dR + γ

R̂̃

R

(
1− βδR1−α) dR




1
1−α

+ w

The first integral is the cost of making a suboptimal choice, due to temptation. The second

integral is the cost of self-control. It is these two costs that commitment allows the individual

to avoid, and what makes paying for it worthwhile. The comparative statics with respect to

c and Rmax are the same as in the linear case.

Theorem 5. The the price for commitment is increasing in the maximum possible reward

multiplier, Rmax, when temptation is myopic, β = 0, but is decreasing when β → β?. The

price for commitment is increasing in the reward, c.

That p is increasing with c is easy to see. When β = 0 the individual is tempted to always

take c immediately, no matter what R could possibly be, so R̃ = Rmax. This means that

the cost of self-control is increasing with Rmax. However, increasing Rmax also decreases the

weight of both costs from not committing. The increase in the cost of self-control is greater

14Krusell et al. (2010) introduced this formulation of the SC model in their paper on optimal taxation.
Amador et al. (2006) use the model to analyze optimal savings contracts. Bucciol (2012) uses a completely
myopic version to estimate the strength of self-control.
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in magnitude than the decrease in the weight. As β → β? the cost of self-control goes to

zero, so increasing Rmax no longer has the first effect. Therefore ∂p(β?)
∂Rmax

< 0. This means that

the difference between the prices at the two extremes, ζ, is increasing with Rmax, as it was

in the linear case.

As shown in the following theorem, the comparative static with respect to the curvature

of the utility function is more complex.

Theorem 6. The change in the price for commitment, p, with respect to the curvature of

the utility function, α, can be positive or negative.

Increasing the curvature has a number of effects that can move in opposite directions with

varying magnitudes. First, changing the curvature of the utility function can have a negative

effect on the marginal utility from p if p−w
c

< 1 and a positive one if p−w
c

> 115. Increasing

the curvature also decreases the utility from the future return. This too can have ambiguous

consequences since it will decrease the loss from choosing R instead of Rfb, but it will also

increase the cost of self-control. The overall change in p will depend on the magnitudes of

all of these different effects combined. Figure 2 illustrates two examples in which changes in

the curvature, α, results in very different changes in p.

15This comes from the fact that the derivative of
(
p−w
c

)1−α
with respect to α is positive if p−w

c < 1 and

negative if p−w
c > 1. For more details see the proof in the appendix.
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Figure 2: p(β) with different utility curvatures.

3.3 Linear vs Nonlinear Estimates

The upshot of Theorem 6 is that if the true utility function is nonlinear a linear approximation

may lead to an overestimation or an underestimation of β and γ. This is illustrated in

Figure 2 where only β? is varied, between 0.4 and 0.8. For instance, imagine that a linear

approximation is used to estimate β given a true CRRA utility function with α = 0.4. In the

graph on the left, one can see that the lines for the linear approximation and the true utility

cross at about β = 0.065 and p = 0.95. This means for any observed p > 0.95 the linear

approximation will overestimate β, while for any p < 0.95 it will underestimate β. On the

other hand, as shown in the graph on the right, if β? = 0.8 then the linear approximation

will consistently overestimate β. Similar examples can be constructed with other types of

utility functions as well.

This is not the only source of ambiguous misestimation. As shown in the following

theorem the discount factor and the function 1+γβ
1+γ

can also be either underestimated or

overestimated when using linear utility instead of the concave utility function. A ramification

of this is that even if there is no temptation or when there is temptation but no self-control,
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as in the βδ model, the linear estimation of the discount factor (and the present-bias in the

second case) does not consistently give either an upper or a lower bound on the true value(s).

Theorem 7. When the true utility function is strictly concave and continuous a linear

approximation may result in over or underestimates for δ and/or 1+γβ
1+γ

. If utility is CRRA

the linear approximation will always result in underestimates for δ and 1+γβ
1+γ

.

Proof. The true value for the discount factor comes from the indifference condition u(c) −

δu(Rfbc) = 0. The linear estimate of δ is δL = 1
Rfb

.

δL is an overestimate if
u (c)

u (Rfbc)
<

1

Rfb

and it is an underestimate if
u (c)

u (Rfbc)
>

1

Rfb

These are utility values, not marginal utilities, so an overestimation of δ is possible. For

example, if u(c) = ln(c) then Rfb = c
1−δ
δ . If c = 2, and δ > 0.5 then ln(2)

ln(2Rfb)
< 1

Rfb
, while

if δ < 0.5 then ln(2)

ln(2Rfb)
> 1

Rfb
. Similarly for the linear estimate for δ(1+γβ)

1+γ
= 1

R
. Because

R ≥ Rfb and u(Rc) is a concave function, it is possible that while δ is overestimated δ(1+γβ)
1+γ

is underestimated.

When the utility function is CRRA linear estimates of δ and δ(1+γβ)
1+γ

will always be low:

δ =
u(c)

u(Rc)
=

c1−α

(Rc)1−α

=
1

R1−α >
1

R

Since R > 1 and α < 1.

However, there is still the problem of ambiguous misestimation of β and γ via p. Therefore

it can be quite important to use the nonlinear algorithm, especially if one expects sufficiently

curved utility functions.
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4 Conclusion

The identification algorithms presented in this paper will provide sufficient data to identify

and disentangle the effectiveness of self-control (strength of temptation) and the myopia

of temptation. These two properties define the characteristics of commitment mechanisms

that can be used to influence people’s behavior and also determine whether or not these

mechanisms are desirable from an individual’s perspective.

If it is found that γ → ∞ consistently for at least a subpopulation then this suggests

that a time inconsistent model without costly self-control may be more robust than a model

with costly self-control. However, note that γ → ∞ does not mean that self-control does

not exist, only that it is not directly costly to use. If this is the case then another algorithm

will need to be derived to identify what an individual finds tempting.

The algorithms above use continuous price lists which present the individual with a

convex range of values to choose from, resulting in point estimates for parameter values, as

opposed to multiple price lists in which there are a finite number of values for the individual

to choose from and results in set estimates. A continuous price list should be just as easy

to implement in both lab and field experiments using either computers or pencil and paper.

The shortcoming of both types of price lists is that the estimates for δ, γ, and β can be

affected by affine translations of the utility functions. However, repeating the algorithms for

multiple levels of reward, c, will identify the magnitude of the utility translation parameter.

Alternatively, instead of repeating the continuous price list structure used in the algorithms

above one could use a Convex Time Budget (CTB)16. In this procedure the individual is

given a budget and decides the fraction that she will allocate between periods 1 and 2 given

some interest rate r. This will result in a comparison of marginal utilities and the cardinality

of the functions will not be an issue when estimating the parameters. Unfortunately the CTB

16Andreoni and Sprenger (2012)
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procedure is not able to give very precise estimates unless the utility functions are sufficiently

concave because the researcher will observe corner solutions for a range of parameter values.

These algorithms can be modified to avoid logistical issues and maximize data generated

when running the experiments. However, the researcher needs to keep in mind how subjects’

incentives can change if the timing of decisions and payments change. For instance, if

subjects are not required to return to the lab for a second session given that they have paid

for commitment, then it will be difficult to know if the participants are paying to commit or

to avoid the hassle of having to return to the lab at a future date.

It still needs to be shown whether the algorithms presented in this paper generate enough

data to identify models with nonlinear self-control costs, in particular convex cost as in Noor

and Takeoka (2010); Fudenberg and Levine (2006, 2012). This is the subject of current

research.

Further research should also be conducted on the effects of background wealth on be-

havior within experiments and on how to properly incorporate background wealth into the

identification procedure. When utility is linear background wealth is not an issue, but it can

be quite complicated when utility is nonlinear and the individual integrates her experimental

rewards into her background wealth. The difficulty arrises from the fact that a change in one

of the parameters, like the discount rate, can have opposite first order effects on savings today

and tomorrow, which makes it difficult to identify. A first empirical stab at this was taken

by Andersen et al. (2008), but not in the context of self-control and temptation. Quah and

Strulovici (2013) study the effects of changes in the discount rate on stochastic continuous-

time control and stopping problems and on individual’s valuations. The background wealth

problem may be able to be reformulated into one of their models. Alternatively, if the in-

dividual lives off of a very regular paycheck and has no unusual expenses during the course

of the experiment, her background savings and consumption problem could be modeled as

a reoccurring cake eating problem that is identical between periods of the experiment, with
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only the experimental rewards being different.

5 Appendix

Proof of Theorem 1

Proof. Linear utilities result normative and temptation utilities of the following form:

U(c1, c2) = c1 + δc2

V (c1, c2) = γ (c1 + βδc2)

Algorithm 1 results in the following two equations:

Period 0 :

max
Rfb

c

Rfbˆ

Rmin

f(R)dR + δc

Rmaxˆ

Rfb

Rf(R)dR

⇒ 0 = cf(Rfb)− δcRfbf(Rfb)

Rfb =
1

δ
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Period 1 :

max
R

c(1 + γ)

R̂

Rmin

f(R)dR + δ(1 + γβ)c

Rmaxˆ

R

Rf(R)dR

−γmax
R̃

cF (R̃) + βδc

Rmaxˆ

R̃

Rf(R)dR


⇒ 0 = c (1 + γ) f(R)− δ (1 + γβ) cRf(R)

R

Rfb
=

1 + γ

(1 + γβ)
(2)

Also, R̃ = 1
βδ

. Unless the individual is overcome by temptation, in which case R̃ = R,

or her temptation is completely myopic, R̃ = Rmax, the researcher never observes R̃, and

Algorithm 1 only supplies two equations for three unknowns. From equation 2 one can

see that ∂β
∂γ

> 0, with a minimum of β = 0 when γ = R−Rfb
Rfb

, and a limit of β → Rfb

R
as

γ →∞.

Proof of Theorem 2

Proof. This augmented identification algorithm produces the following three equations.

Period 0.a :

max
Rfb

c

Rfbˆ

Rmin

f(R)dR + δc

Rmaxˆ

Rfb

Rf(R)dR

⇒ FC:0 = cf(Rfb)− δcRfbf(Rfb)

Rfb =
1

δ
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Period 0.b :

δc

Rfbˆ

Rmin

f(R)dR + δ2c

Rmaxˆ

Rfb

Rf(R)dR− p+ w = c(1 + γ)δ

R̂

Rmin

f(R)dR + δ2(1 + γβ)c

Rmaxˆ

R

Rf(R)dR

−γmax
R̃

δcF (R̃) + βδ2c

Rmaxˆ

R̃

Rf(R)dR



Period 1 :

max
R

c(1 + γ)

R̂

Rmin

f(R)dR + δ(1 + γβ)c

Rmaxˆ

R

Rf(R)dR

−γmax
R̃

cF (R̃) + βδc

Rmaxˆ

R̃

Rf(R)dR


⇒ FC:0 = c (1 + γ) f(R)− δ (1 + γβ) cRf(R)

R =
1 + γ

δ (1 + γβ)

The maximum price that the individual will be willing to pay will be the difference

between her expected utility with and without commitment (Rfb vs R with the cost of

self-control).
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p = w + δ

Rfbˆ

Rmin

cf(R)dR + δ2
Rmaxˆ

Rfb

cRf(R)dR

︸ ︷︷ ︸
Expected utility with commitment

− δ



normative + temptation utility︷ ︸︸ ︷
(1 + γ)

R̂

Rmin

cf(R)dR + δ(1 + γβ)

Rmaxˆ

R

cRf(R)dR−

cost of self-control︷ ︸︸ ︷
γ

 R̂̃

Rmin

cf(R)dR + βδ

Rmaxˆ

R̃

cRf(R)dR




︸ ︷︷ ︸
Expected utility with no commitment

= cδ

R̂

Rfb

[δR− 1] f(R)dR

︸ ︷︷ ︸
cost from

suboptimal choice

+ cγδ

 R̂̃

R

[
1− βδ2R

]
f(R)dR


︸ ︷︷ ︸

net cost of self-control

without commtiment

+w

As can be seen from this last equation, commitment serves two purposes: it forces behav-

ior in the direction of the normative optimum, and it decreases the net cost of self-control.

All else equal, increasing γ will increase the expected cost from a suboptimal choice, since

the individual succumbs a bit more to temptation. It will have two opposing effects on the

expected net cost of self-control. On the one hand it will decrease the expected net cost

since the individual will succumb some more to temptation (∂R
∂γ
> 0) and control herself less.

On the other, it increases the expected cost of any self-control that is used. The first effect

is of identical magnitude and opposite in sign as the increase in the expected cost from a

suboptimal choice, so these wash out. The second does not cancel with anything else, so

∂p
∂γ
> 0.

Decreasing β has three effects on the expected net cost of self-control. First, as with an
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increase in γ, it also causes the expected cost from a suboptimal choice to increase, and by

the same magnitude as the decrease in the expected net cost of self-control due to increasing

R, so these cancel out. Second, the decrease in β results in an increase in the range that

self-control is used (∂R̃
∂β

< 0). An increase in R̃ shifts a marginal amount of the reward from

t1 to period 0, however this shift will have no effect since it is along the margin at which the

individual’s temptation utility is indifferent between consumption today and consumption

at t1. Finally, decreasing β will result in a decrease in the temptation value of consumption

tomorrow, thereby increasing the temptation to shift consumption from period t1 to today.

This last effect is the only one that does not wash out, so ∂p
∂β
< 0, all else equal.

For the model to be fully identified by Algorithm 2 p must change monotonically with

either γ(β) or β(γ) as defined by R = 1+γ
δ(1+γβ)

. Either the effect of γ or the effect of β

will have to dominate in order for p to change monotonically in this situation. Substitute

β = 1+γ−δR
γδR

and take the derivative of p with respect to γ:

p = cδ

 R̂

Rfb

[δR− 1] f(R)dR +

R̂̃

R

[
γ − 1 + γ − δR

R
R

]
f(R)dR

+ w

∂p

∂γ
= cδ

R̂̃

R

[
1− R

R

]
f(R)dR < 0

Therefore the moderating effect of increasing β dominates the aggravating effect of an in-

creasing γ. When R is constant the price for commitment is larger when temptation is more

myopic (smaller β) than when it is more farsighted (larger β) because the individual must
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exert a greater amount of self-control.

p

(
γ =

R−Rfb

Rfb

)
= cδ

 R̂

Rfb

[δR− 1] f(R)dR + γ
[
F (Rmax)− F (R)

]+ w > 0

lim
γ→∞

p(γ) = cδ

R̂̃

Rfb

[δR− 1] f(R)dR + w > 0

Define ζ ≡ p
(
γ = R−Rfb

Rfb

)
− limγ→∞ p(γ).

ζ = cδ

 R̂

R̃

[δR− 1] f(R)dR + γ
[
F (Rmax)− F (R)

] > 0

Given that ∂p
∂γ

< 0 and ζ > 0 any observed p will correspond to at most one value of γ.

Therefore the model is fully identified.

Proof for Theorem 4

Proof. The individual’s choice of Rfb in period 0 maximizes her expected utility in period

1. Her expected utility with commitment is

1

δ
U0(
{
Rfb
}

) =

Rfbˆ

Rmin

u(c)f(R)dR + δ

Rmaxˆ

Rfb

u(Rc)f(R)dR.
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The first order conditions result in Rfb being defined by

u(c)− δu(Rfbc) = 0

⇒ δ =
u(c)

u(Rfbc)

Expected utility with no commitment is

1

δ
U0(R) =

R̂

Rmin

u(c)f(R)dR + δ

Rmaxˆ

R

u(Rc)f(R)dR

−γ

 R̂̃

Rmin

v(c)f(R)dR + βδ

Rmaxˆ

R̃

v(Rc)f(R)dR−
R̂

Rmin

v(c)f(R)dR− βδ
Rmaxˆ

R

v(Rc)f(R)dR


R is defined by the equality

u(c) + γv(c)− δ
[
u(Rc) + βγv(Rc)

]
= 0 (3)

The curvature of many utility functions could be measured by varying the reward, c. The

Implicit Function theorem gives us

∂R

∂c
=

u′(c) + γv′(c)− δR
[
u′(Rc) + γβv′(Rc)

]
cδ
[
u′(Rc) + γβv′(Rc)

]
=

u′(c) + γv′(c)

cδ
[
u′(Rc) + γβv′(Rc)

] − R

c

which is unique up to linear transformations of the form σ [U(c1, c2) + V (c1, c2)]. In the

special case V (c, Rc) = γ [u(c) + βδu(Rc)] then Equation (3) becomes

δ(1 + γβ)

1 + γ
=

u(c)

u(Rc)
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This can hold for a continuum of values for γ and β. If in addition, u(·) is CRRA then

R =

[
1 + γ

δ(1 + γβ)

] 1
1−α

which does not depend on c.

An alternative step is needed to measure the shape of u(·) if it is CRRA. The certainty

equivalent is given by

u(x) + γv(x) =

zmaxˆ

zmin

[u(z) + γv(z)] f(z)dz

The combined utility function u(c) + γv(c) is a vNM utility function, so the ranking of

lotteries will be unique up to affine transformations. If there is no measurement error, only

one certainty equivalent is necessary for a CRRA utility function.

One more equation is needed to identify the parameters. The maximum price, p, that

the individual is willing to pay for commitment gives us this additional necessary equation.

δ

Rfbˆ

Rmin

u(c)f(R)dR+ δ2
Rmaxˆ

Rfb

u(Rc)f(R)dR+ u(w − p) =
δ
´ R
Rmin

u(c)f(R)dR+ δ2
´ Rmax
R

u(Rc)f(R)dR

+γδ
´ R̃
R [βδu(Rc)− u(c)] f(R)dR

Substituting in β = u(c)(1+γ)−δu(Rc)
γδu(Rc)

:

u(w − p) =
δ
´ R
Rfb u(c)f(R)dR− δ2

´ R
Rfb u(Rc)f(R)dR

+γδ
´ R̃
R [βδu(Rc)− u(c)] f(R)dR

= δ

R̂

Rfb

u(c)f(R)dR− δ2
R̂

Rfb

u(Rc)f(R)dR+ δ

R̂̃

R

[
u(c)(1 + γ)− δu(Rc)

u(Rc)
u(Rc)− γu(c)

]
f(R)dR
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Now use the implicit function theorem to find ∂p
∂γ

:

∂p

∂γ
=
u(c)
´ R̃
R

[
1− u(Rc)

u(Rc)

]
f(R)dR

u′(w − p)
< 0

Therefore p(γ) is unique with an upper bound when γ = u(Rc)−u(Rfbc)
u(Rfbc)

and a lower bound as

γ →∞. With this observation we can identify all parameters and functional forms.

Relations for CRRA utility and KKS farsighted temptation that are useful for the fol-

lowing two proofs:

Rfb =

[
1

δ

] 1
1−α

R =

[
1 + γ

δ(1 + γβ)

] 1
1−α

R̃ =

[
1

βδ

] 1
1−α
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Proof for Theorem 5

Proof. First the derivative of p with respect to Rmax, when β = 0:

p(0) = c

[
δ

Rmax

[
−
(
R−Rfb

)
+ δ

ˆ R

Rfb
R1−αdR + γ

(
Rmax −R

)]] 1
1−α

+ w

∂p(0)

∂Rmax

=
c

1− α

[
δ

Rmax

[
−
(
R−Rfb

)
+ δ

ˆ R

Rfb
R1−αdR + γ

(
Rmax −R

)]] α
1−α

δt

R2
max

{
γRmax −

[
−
(
R−Rfb

)
+ δ

ˆ R

Rfb
R1−αdR + γ

(
Rmax −R

)]}

=
c

1− α

(p
c

)α δ

R2
max

{
γR +

(
R−Rfb

)
− δ
ˆ R

Rfb
R1−αdR

}

=
c

1− α

(p
c

)α δ

R2
max

{
(1 + γ)R−Rfb − 1

2− α

[(
R

Rfb

)1−α

R−Rfb

]}

=
c

1− α

(p
c

)α δ

R2
max

{
(1 + γ)R− 1− α

2− α
Rfb − 1 + γ

2− α
R

}
=

c

1− α

(p
c

)α δ

R2
max

1− α
2− α

{
(1 + γ)R−Rfb

}
> 0

The same derivative, but when β → β?.

p(β?) = c

[
δ

Rmax

[
−
(
R−Rfb

)
+ δ

ˆ R

Rfb
R1−αdR

]] 1
1−α

+ w

∂p(β?)

∂Rmax

=
pα

1− α

− c

1− α

[
δ

R2
max

[
−
(
R−Rfb

)
+ δ

ˆ R

Rfb
R1−αdR

]] α
1−α
 < 0

The derivative with respect to c is straightforward and omitted.
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Proof for Theorem 6

Proof. The equation that determines the price the individual is willing to pay for commitment

when utilities are CRRA is:

(w−p)1−α
1−α + δ Rfb−Rmin

Rmax−Rmin
c1−α

1−α

δ2

+Rmax−Rmin

´ Rmax
Rfb

(Rc)1−α

1−α dR
=

δ R−Rmin
Rmax−Rmin

c1−α

1−α + δ2

Rmax−Rmin

´ Rmax
R

(Rc)1−α

1−α dR

+ γδ
Rmax−Rmin

´ R̃
R

[
βδ (Rc)

1−α

1−α − c1−α

1−α

]
dR

− (w − p) 1−α =
−δ R−Rfb

Rmax−Rmin c
1−α + δ2

Rmax−Rmin

´ R
Rfb

(Rc)1−αdR

− γδ
Rmax−Rmin

´ R̃
R

[
βδ (Rc)

1−α

1−α − c1−α

1−α

]
dR

⇒ p = c

 δ

Rmax −Rmin

− (R−Rfb
)

+ δ

ˆ R

Rfb
R1−αdR + γ

R̂̃

R

[
1− βδR1−α] dR




1
1−α

+ w

∂p

∂α
= c

 δ

Rmax −Rmin

−(R−Rfb)+ δ

ˆ R
Rfb

R1−αdR− γ
R̂̃

R

[
βδR1−α − 1

]
dR




1
1−α

 1

(1− α)2
ln

 δ

Rmax −Rmin

−(R−Rfb)+ δ

ˆ R
Rfb

R1−αdR− γ
R̂̃

R

[
βδR1−α − 1

]
dR




+

δ
Rmax−Rmin

[
−δ
´R
Rfb R

1−α ln(R)dR+ γ
´ R̃
R
βδR1−α ln(R)dR

]
(1− α) δ

Rmax−Rmin

[
−
(
R−Rfb

)
+ δ
´R
Rfb R

1−αdR− γ
´ R̃
R

[βδR1−α − 1] dR
]


= (p− w)

 1

(1− α)2
ln

([
p− w
c

]1−α)
+

1

1− α

[
c

p− w

]1−α  δ

Rmax −Rmin

−δ ˆ R
Rfb

R1−α ln(R)dR+ γ

R̂̃

R

βδR1−α ln(R)dR





=
p− w
1− α

ln

(
p− w
c

)
+

[
c

p− w

]1−α  δ

Rmax −Rmin

−δ ˆ R
Rfb

R1−α ln(R)dR+ γ

R̂̃

R

βδR1−α ln(R)dR





The sign of ∂p
∂α

is ambiguous. For large enough Rmax then p−w > c and ln(p−w
c

) > 0. This

is illustrated in the two graphs in Figure 1.
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Krusell, P., Kuruşçu, B., and Smith Jr, A. (2010). Temptation and taxation. Econometrica,

78(6):2063–2084.

Laibson, D. (1997). Golden eggs and hyperbolic discounting*. Quarterly Journal of Eco-

nomics, 112(2):443–477.

Meier, S. and Sprenger, C. (2010). Present-biased preferences and credit card borrowing.

American Economic Journal: Applied Economics, 2(1):193–210.

Noor, J. (2007). Commitment and self-control. Journal of Economic Theory, 135(1):1–34.

Noor, J. and Takeoka, N. (2010). Uphill self-control. Theoretical Economics, 5:127–158.

Quah, J. K.-H. and Strulovici, B. (2013). Discounting, values, and decisions. Journal of

Political Economy.

Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration theorem. Econo-

metrica, 68(5):1281–1292.

Thaler, R. (1981). Some empirical evidence on dynamic inconsistency. Economic Letters,

8:201–207.

Trope, Y. and Fishbach, A. (2000). Counteractive self-control in overcoming temptation.

Journal of Personality and Social Psychology, 79(4):493–506.

39


