IDEAS home Printed from https://ideas.repec.org/f/ple362.html
   My authors  Follow this author

Samantha Leorato

Personal Details

First Name:Samantha
Middle Name:
Last Name:Leorato
Suffix:
RePEc Short-ID:ple362

Affiliation

Dipartimento di Economia e Finanza
Facoltà di Economia
Università degli Studi di Roma "Tor Vergata"

Roma, Italy
http://www.economia.uniroma2.it/def/

: +39 06 7259 5717
+39 +6 +72595504
+39 +6 +72595502
RePEc:edi:dsrotit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Anna Gloria Billé & Samantha Leorato, 2017. "Quasi-ML estimation, Marginal Effects and Asymptotics for Spatial Autoregressive Nonlinear Models," BEMPS - Bozen Economics & Management Paper Series BEMPS44, Faculty of Economics and Management at the Free University of Bozen.
  2. Franco Peracchi & Samantha Leorato, 2015. "Shape Regressions," Working Papers gueconwpa~15-15-06, Georgetown University, Department of Economics.
  3. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
  4. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
  5. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," CEIS Research Paper 300, Tor Vergata University, CEIS, revised 17 Dec 2013.
  6. Samantha Leorato & Franco Peracchi & Andrei V. Tanase, 2010. "Asymptotically Efficient Estimation of the Conditional Expected Shortfall," EIEF Working Papers Series 1013, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2010.
  7. Samantha Leorato, 2008. "A refined Jensen’s inequality in Hilbert spaces and empirical approximations," CEIS Research Paper 134, Tor Vergata University, CEIS, revised 24 Nov 2008.

Articles

  1. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
  2. Leorato, S., 2009. "A refined Jensen's inequality in Hilbert spaces and empirical approximations," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1044-1060, May.
  3. Leorato, S. & Orsingher, E., 2009. "Branching on a Sierpinski graph," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 145-154, January.
  4. Broniatowski, M. & Leorato, S., 2006. "An estimation method for the Neyman chi-square divergence with application to test of hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1409-1436, July.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Franco Peracchi & Samantha Leorato, 2015. "Shape Regressions," Working Papers gueconwpa~15-15-06, Georgetown University, Department of Economics.

    Cited by:

    1. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.

  2. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.

    Cited by:

    1. Samantha Leorato & Franco Peracchi, 2015. "Shape Regressions," EIEF Working Papers Series 1506, Einaudi Institute for Economics and Finance (EIEF), revised Jul 2015.
    2. Stanislav Anatolyev & Jozef Barunik, 2017. "Forecasting dynamic return distributions based on ordered binary choice and cross-quantile predictability connection," Papers 1711.05681, arXiv.org, revised Oct 2018.

  3. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," CEIS Research Paper 300, Tor Vergata University, CEIS, revised 17 Dec 2013.

    Cited by:

    1. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    2. Richey, Jeremiah & Rosburg, Alicia, 2016. "Understanding intergenerational economic mobility by decomposing joint distributions," MPRA Paper 72665, University Library of Munich, Germany.
    3. Richey, Jeremiah & Rosburg, Alicia, 2015. "Decomposing economic mobility transition matrices," MPRA Paper 66485, University Library of Munich, Germany.
    4. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, Open Access Journal, vol. 10(9), pages 1-48, September.
    5. Bargain, Olivier & Doorley, Karina & Van Kerm, Philippe, 2018. "Minimum Wages and the Gender Gap in Pay: New Evidence from the UK and Ireland," IZA Discussion Papers 11502, Institute for the Study of Labor (IZA).
    6. Samantha Leorato & Franco Peracchi, 2015. "Shape Regressions," EIEF Working Papers Series 1506, Einaudi Institute for Economics and Finance (EIEF), revised Jul 2015.
    7. Ferreira,Francisco H. G. & Firpo,Sergio & Galvao,Antonio F., 2017. "Estimation and inference for actual and counterfactual growth incidence curves," Policy Research Working Paper Series 7933, The World Bank.
    8. García, A., 2016. "Oaxaca-Blinder Type Counterfactual Decomposition Methods for Duration Outcomes," DOCUMENTOS DE TRABAJO 014186, UNIVERSIDAD DEL ROSARIO.
    9. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    10. Kolodziej, Ingo W.K. & García-Gómez, Pilar, 2017. "The causal effects of retirement on mental health: Looking beyond the mean effects," Ruhr Economic Papers 668, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Ying-Ying Lee, 2015. "Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-14, December.
    12. Kaspar Wüthrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.

  4. Samantha Leorato & Franco Peracchi & Andrei V. Tanase, 2010. "Asymptotically Efficient Estimation of the Conditional Expected Shortfall," EIEF Working Papers Series 1013, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2010.

    Cited by:

    1. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2013. "Pair Copula Construction based Expected Shortfall estimation," Economics Bulletin, AccessEcon, vol. 33(2), pages 1067-1072.
    2. Chun, So Yeon & Shapiro, Alexander & Uryasev, Stan, 2011. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," MPRA Paper 30132, University Library of Munich, Germany.
    3. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.

Articles

  1. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    See citations under working paper version above.
  2. Broniatowski, M. & Leorato, S., 2006. "An estimation method for the Neyman chi-square divergence with application to test of hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1409-1436, July.

    Cited by:

    1. Broniatowski, Michel, 2014. "Minimum divergence estimators, maximum likelihood and exponential families," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 27-33.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 7 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (6) 2010-08-21 2013-12-29 2015-04-19 2015-07-18 2015-11-15 2018-01-01. Author is listed
  2. NEP-RMG: Risk Management (2) 2015-07-18 2015-07-25
  3. NEP-URE: Urban & Real Estate Economics (2) 2015-04-19 2018-01-01
  4. NEP-ETS: Econometric Time Series (1) 2018-01-01
  5. NEP-ORE: Operations Research (1) 2018-01-01

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Samantha Leorato should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.