IDEAS home Printed from https://ideas.repec.org/f/pch398.html
   My authors  Follow this author

Chin Wen Cheong

Personal Details

First Name:Chin
Middle Name:Wen
Last Name:Cheong
Suffix:
RePEc Short-ID:pch398
http://pesona.mmu.edu.my/~wcchin

Affiliation

University Kebangsaan Malaysia

http://www.ukm.my
Malaysia, Bangi

Research output

as
Jump to: Articles

Articles

  1. Chin Wen Cheong & Ng Sew Lai & Nurul Afidah Mohmad Yusof & Khor Chia Ying, 2012. "Asymmetric Fractionally Integrated Volatility Modelling of Asian Equity Markets under the Subprime Mortgage Crisis," Journal of Quantitative Economics, The Indian Econometric Society, vol. 10(1), pages 70-84, January.
  2. Chin Wen Cheong, 2010. "Estimating the Hurst parameter in financial time series via heuristic approaches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 201-214.
  3. Chin Wen Cheong, 2010. "A Variance Ratio Test of Random Walk in Energy Spot Markets," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(1), pages 105-117, January.
  4. Chin Wen Cheong, 2010. "Optimal choice of sample fraction in univariate financial tail index estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2043-2056.
  5. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
  6. Chin, Wen Cheong, 2008. "Heavy-tailed value-at-risk analysis for Malaysian stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4285-4298.
  7. Cheong, Chin Wen, 2008. "Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 889-898.
  8. Wen Cheong, Chin & Hassan Shaari Mohd Nor, Abu & Isa, Zaidi, 2007. "Asymmetry and long-memory volatility: Some empirical evidence using GARCH," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 651-664.
  9. Chin Wen Cheong & Abu Hassan Shaari Mohd Nor & Zaidi Isa, 2007. "An empirical study of realized and long-memory GARCH standardized stock-return," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(2), pages 121-127.
  10. Chin Wen Cheong & Zaidi Isa & Abu Hassan Shaari Mohd Nor, 2007. "Modelling financial observable-volatility using long memory models," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(3), pages 201-208.
  11. Chin Wen Cheong, 2007. "Statistical Evaluation of Market Barometer in Malaysian Stock Market," The IUP Journal of Financial Economics, IUP Publications, vol. 0(3), pages 7-27, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Chin Wen Cheong, 2010. "Estimating the Hurst parameter in financial time series via heuristic approaches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 201-214.

    Cited by:

    1. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    2. Aurelio F. Bariviera & Mar'ia Jos'e Basgall & Waldo Hasperu'e & Marcelo Naiouf, 2017. "Some stylized facts of the Bitcoin market," Papers 1708.04532, arXiv.org.
    3. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    4. Lisana B. Martinez & M. Belén Guercio & Aurelio Fernandez Bariviera & Antonio Terceño, 2018. "The impact of the financial crisis on the long-range memory of European corporate bond and stock markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 1-15, February.

  2. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.

    Cited by:

    1. Delavari, Majid & Gandali Alikhani, Nadiya, 2013. "The Dynamic Effects of Crude Oil and Natural Gas Prices on Iran's Methanol," MPRA Paper 49733, University Library of Munich, Germany.
    2. Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
    3. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    4. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    5. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    6. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    7. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    8. Komijani, Akbar & Naderi, Esmaeil & Gandali Alikhani, Nadiya, 2013. "A Hybrid Approach for Forecasting of Oil Prices Volatility," MPRA Paper 44654, University Library of Munich, Germany.
    9. Ladislav Kristoufek, 2014. "Leverage effect in energy futures," Papers 1403.0064, arXiv.org.
    10. Philippe Charlot & Vêlayoudom Marimoutou, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Working Papers hal-00980125, HAL.
    11. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    12. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
    13. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    14. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    15. Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, pages 3807-3815.
    16. Zhang, Chuanguo & Chen, Xiaoqing, 2014. "The impact of global oil price shocks on China’s bulk commodity markets and fundamental industries," Energy Policy, Elsevier, vol. 66(C), pages 32-41.
    17. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," ISU General Staff Papers 201105010700001512, Iowa State University, Department of Economics.
    18. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    19. Ma, Feng & Liu, Jing & Huang, Dengshi & Chen, Wang, 2017. "Forecasting the oil futures price volatility: A new approach," Economic Modelling, Elsevier, vol. 64(C), pages 560-566.
    20. Youngho Chang & Zheng Fang & Shigeyuki Hamori, 2017. "Volatility and Causality in Strategic Commodities: Characteristics, Myth and Evidence," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(8), pages 162-178, August.
    21. Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
    22. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    23. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    24. Raúl De Jesús Gutiérrez & Reyna Vergara González & Miguel A. Díaz Carreño, 2015. "Predicción de la volatilidad en el mercado del petróleo mexicano ante la presencia de efectos asimétricos," REVISTA CUADERNOS DE ECONOMÍA, UN - RCE - CID.
    25. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    26. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    27. Igor LEBRUN & Ludovic DOBBELAERE, "undated". "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
    28. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    29. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    30. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    31. Delavari, Majid & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2013. "Does long memory matter in forecasting oil price volatility?," MPRA Paper 46356, University Library of Munich, Germany.
    32. Illig, Aude & Schindler, Ian, 2016. "Oil Extraction and Price Dynamics," TSE Working Papers 16-701, Toulouse School of Economics (TSE).
    33. Delavari, Majid & Gandali Alikhani, Nadiya, 2012. "The Effect of Crude Oil Price on the Methanol price," MPRA Paper 49727, University Library of Munich, Germany.
    34. Kim, Jong-Min & Jung, Hojin, 2017. "Can asymmetric conditional volatility imply asymmetric tail dependence?," Economic Modelling, Elsevier, vol. 64(C), pages 409-418.
    35. Sasa Zikovic, 2011. "Measuring risk of crude oil at extreme quantiles," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics, vol. 29(1), pages 9-31.
    36. Liu, Li & Wan, Jieqiu, 2011. "A study of correlations between crude oil spot and futures markets: A rolling sample test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3754-3766.
    37. Muhammad Irfan Malik & Abdul Rashid, 2017. "Return And Volatility Spillover Between Sectoral Stock And Oil Price: Evidence From Pakistan Stock Exchange," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., pages 1-22.
    38. Zhang, Chuanguo & Tu, Xiaohua, 2016. "The effect of global oil price shocks on China's metal markets," Energy Policy, Elsevier, vol. 90(C), pages 131-139.
    39. He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
    40. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2013. "Long memory and asymmetry in the volatility of commodity markets and Basel Accord: choosing between models," Working Papers 2013-9, Department of Research, Ipag Business School.
    41. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    42. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    43. Walid Matar & Saud M. Al-Fattah & Tarek Atallah & Axel Pierru, 2013. "An introduction to oil market volatility analysis," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(3), pages 247-269, September.
    44. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    45. Aude Illig & Ian Schindler, 2017. "Oil Extraction, Economic Growth, and Oil Price Dynamics," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-17, March.
    46. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    47. Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
    48. Lin, Boqiang & Wesseh, Presley K. & Appiah, Michael Owusu, 2014. "Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness," Energy Economics, Elsevier, vol. 42(C), pages 172-182.
    49. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    50. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    51. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    52. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.

  3. Chin, Wen Cheong, 2008. "Heavy-tailed value-at-risk analysis for Malaysian stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4285-4298.

    Cited by:

    1. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    2. Stavros Degiannakis & Christos Floros & Alexandra Livada, 2012. "Evaluating value-at-risk models before and after the financial crisis of 2008: International evidence," Managerial Finance, Emerald Group Publishing, vol. 38(4), pages 436-452, March.
    3. Cheng-Few Lee & Jung-Bin Su, 2012. "Alternative statistical distributions for estimating value-at-risk: theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 309-331, October.
    4. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.

  4. Cheong, Chin Wen, 2008. "Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 889-898.

    Cited by:

    1. Bertram, William K., 2008. "Measuring time dependent volatility and cross-sectional correlation in Australian equity returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3183-3191.
    2. Todea, Alexandru & Platon, Diana, 2012. "Sudden Changes In Volatility In Central And Eastern Europe Foreign Exchange Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, pages 38-51.
    3. Fernandez, Viviana, 2009. "The behavior of stock returns in the mining industry following the Iraq war," Research in International Business and Finance, Elsevier, pages 274-292.
    4. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Structural changes and volatility transmission in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4317-4324.
    5. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    6. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    7. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.

  5. Wen Cheong, Chin & Hassan Shaari Mohd Nor, Abu & Isa, Zaidi, 2007. "Asymmetry and long-memory volatility: Some empirical evidence using GARCH," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 651-664.

    Cited by:

    1. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    2. Chin, Wen Cheong, 2008. "Heavy-tailed value-at-risk analysis for Malaysian stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4285-4298.
    3. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
    4. Arshad, Shaista & Rizvi, Syed Aun R., 2015. "The troika of business cycle, efficiency and volatility. An East Asian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 158-170.
    5. Ben Rejeb, Aymen & Boughrara, Adel, 2013. "Financial liberalization and stock markets efficiency: New evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 17(C), pages 186-208.
    6. Lim, Kian-Ping & Brooks, Robert D. & Kim, Jae H., 2008. "Financial crisis and stock market efficiency: Empirical evidence from Asian countries," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 571-591, June.
    7. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    8. Cheong, Chin Wen, 2008. "Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 889-898.
    9. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.

  6. Chin Wen Cheong & Zaidi Isa & Abu Hassan Shaari Mohd Nor, 2007. "Modelling financial observable-volatility using long memory models," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(3), pages 201-208.

    Cited by:

    1. Nasha Maveé & Roberto Perrelli & Axel Schimmelpfennig, 2016. "Surprise, Surprise; What Drives the Rand / U.S. Dollar Exchange Rate Volatility?," IMF Working Papers 16/205, International Monetary Fund.
    2. Chin Wen CHEONG & Lee Min CHERNG & Grace Lee Ching YAP, 2016. "Heterogeneous Market Hypothesis Evaluations using Various Jump-Robust Realized Volatility," Journal for Economic Forecasting, Institute for Economic Forecasting, pages 50-64.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Chin Wen Cheong should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.