IDEAS home Printed from https://ideas.repec.org/f/pch1247.html
   My authors  Follow this author

Davy Chen

Personal Details

First Name:Davy
Middle Name:
Last Name:Chen
Suffix:
RePEc Short-ID:pch1247
[This author has chosen not to make the email address public]

Affiliation

(83%) School of Business
Sun Yat-Sen University

Guangzhou, China
http://edu.bssysu.com/

:


RePEc:edi:sbsyscn (more details at EDIRC)

(13%) Department of Finance
Lingnan (University) College
Sun Yat-Sen University

Guangzhou, China
http://www.lingnan.net/jiaoxue/csx.asp

:


RePEc:edi:dfsuncn (more details at EDIRC)

(4%) Department of Economics
Lingnan (University) College
Sun Yat-Sen University

Guangzhou, China
http://www.lingnan.net/jiaoxue/jjxx.asp

:


RePEc:edi:desuncn (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Articles

  1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
  2. D. Chen & W. Hu & F. Gao & H. Deng & L. Sun, 2011. "Tungsten cluster migration on nanoparticles: minimum energy pathway and migration mechanism," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(1), pages 31-40, March.
  3. D. Chen & W. Hu & J. Yang & H. Deng & L. Sun & F. Gao, 2009. "Diffusion of tungsten clusters on tungsten (110) surface," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(4), pages 479-485, April.
  4. Chen, D. & Doumeingts, G. & Pun, L., 1990. "An integrated inventory model based upon GRAI tools," Engineering Costs and Production Economics, Elsevier, pages 313-318.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Wikipedia mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.

    Mentioned in:

    1. Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain (ECTA 2012) in ReplicationWiki ()

Working papers

  1. Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Cited by:

    1. Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
    2. Douglas Lehmann & Yun Li & Rajiv Saran & Yi Li, 0. "Strengthening Instrumental Variables Through Weighting," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-19.
    3. Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
    5. Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-28, March.
    6. Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
    7. Chen, Daniel L. & Lind, Jo Thori, 2016. "The Political Economy of Beliefs: Why Fiscal and Social Conservatives/Liberals (Sometimes) Come Hand-in-Hand," TSE Working Papers 16-722, Toulouse School of Economics (TSE).
    8. Badawi, Adam B. & Chen, Daniel L., 2016. "The Shareholder Wealth Effects of Delaware Litigation," TSE Working Papers 16-683, Toulouse School of Economics (TSE).
    9. Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Health, Econometrics and Data Group (HEDG) Working Papers 17/22, HEDG, c/o Department of Economics, University of York.
    10. Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
    11. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Yoonseok Lee & Mehmet Caner & Xu Han, 2015. "Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Center for Policy Research Working Papers 177, Center for Policy Research, Maxwell School, Syracuse University.
    13. Zhu, Ying, 2015. "Sparse Linear Models and l1−Regularized 2SLS with High-Dimensional Endogenous Regressors and Instruments," MPRA Paper 81217, University Library of Munich, Germany.
    14. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Dec 2017.
    15. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    16. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    17. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2012. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers CWP10/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Ye Luo & Martin Spindler, 2016. "High-Dimensional $L_2$Boosting: Rate of Convergence," Papers 1602.08927, arXiv.org, revised Nov 2016.
    19. Belloni, Alexandre. & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Financial Risk Management," The Warwick Economics Research Paper Series (TWERPS) 1125, University of Warwick, Department of Economics.
    20. Krüger, Jens J. & Rhiel, Mathias, 2016. "Determinants of ICT infrastructure: A cross-country statistical analysis," Darmstadt Discussion Papers in Economics 228, Darmstadt University of Technology, Department of Law and Economics.
    21. Anders Bredahl Kock & Haihan Tang, 2014. "Inference in High-dimensional Dynamic Panel Data Models," CREATES Research Papers 2014-58, Department of Economics and Business Economics, Aarhus University.
    22. Ye Luo & Martin Spindler, 2017. "$L_2$Boosting for Economic Applications," Papers 1702.03244, arXiv.org.
    23. Manudeep Bhuller & Gordon B. Dahl & Katrine V. Løken & Magne Mogstad, 2016. "Incarceration, Recidivism and Employment," NBER Working Papers 22648, National Bureau of Economic Research, Inc.
    24. Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
    25. Daniel Paravisini & Veronica Rappoport & Philipp Schnabl & Daniel Wolfenzon, 2015. "Dissecting the Effect of Credit Supply on Trade: Evidence from Matched Credit-Export Data," Review of Economic Studies, Oxford University Press, vol. 82(1), pages 333-359.
    26. Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
    27. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    28. Marine Carrasco & Guy Tchuente, 2015. "Efficient estimation with many weak instruments using regularization techniques," Studies in Economics 1517, School of Economics, University of Kent.
    29. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    30. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    31. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    32. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    33. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    34. Liu, Chu-An & Tao, Jing, 2016. "Model selection and model averaging in nonparametric instrumental variables models," MPRA Paper 69492, University Library of Munich, Germany.
    35. Harry H. Kelejian, 2016. "Critical issues in spatial models: error term specifications, additional endogenous variables, pre-testing, and Bayesian analysis," Letters in Spatial and Resource Sciences, Springer, pages 113-136.
    36. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    37. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    38. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    39. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    40. Douglas Lehmann & Yun Li & Rajiv Saran & Yi Li, 2017. "Strengthening Instrumental Variables Through Weighting," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 320-338, December.
    41. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    42. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    43. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    44. Chen, Daniel L. & Sethi, Jasmin, 2016. "Insiders, Outsiders, and Involuntary Unemployment: Sexual Harrassment Exacerbates Gender Inequality," TSE Working Papers 16-687, Toulouse School of Economics (TSE).
    45. Liran Einav & Jonathan Levin, 2014. "The Data Revolution and Economic Analysis," Innovation Policy and the Economy, University of Chicago Press, pages 1-24.
    46. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    47. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
    48. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers CWP51/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    49. Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
    50. Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
    51. Victor Chernozhukov & Chris Hansen & Martin Spindler, 2016. "High-Dimensional Metrics in R," Papers 1603.01700, arXiv.org, revised Aug 2016.
    52. Marcelo C. Medeiros & Eduardo F. Mendes, 2012. "Estimating High-Dimensional Time Series Models," CREATES Research Papers 2012-37, Department of Economics and Business Economics, Aarhus University.
    53. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Jul 2017.
    54. Chen, Daniel L. & Levonyan, Vardges & Yeh, Susan, 2016. "Policies Affect Preferences: Evidence from Random Variation in Abortion Jurisprudence," TSE Working Papers 16-723, Toulouse School of Economics (TSE).
    55. Sheldon, Tamara L. & DeShazo, J.R., 2017. "How does the presence of HOV lanes affect plug-in electric vehicle adoption in California? A generalized propensity score approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 146-170.
    56. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org.
    57. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," The School of Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    58. Ruf, Daniel, 2017. "Agglomeration Effects and Liquidity Gradients in Local Rental Housing Markets," Working Papers on Finance 1702, University of St. Gallen, School of Finance.
    59. Eric Gautier & Alexandre Tsybakov, 2013. "Pivotal estimation in high-dimensional regression via linear programming," Papers 1303.7092, arXiv.org, revised Apr 2013.
    60. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for high-dimensional sparse econometric models," CeMMAP working papers CWP41/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    61. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    62. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    63. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    64. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    65. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    66. Damian Kozbur, 2017. "Sharp convergence rates for forward regression in high-dimensional sparse linear models," ECON - Working Papers 253, Department of Economics - University of Zurich.
    67. Brian J. Asquith & Judith K. Hellerstein & Mark J. Kutzbach & David Neumark, 2017. "Social Capital and Labor Market Networks," NBER Working Papers 23959, National Bureau of Economic Research, Inc.
    68. Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
    69. Achim Ahrens, 2015. "Civil conflicts in Africa: Climate, economic shocks, nighttime lights and spill-over effects," SEEC Discussion Papers 1501, Spatial Economics and Econometrics Centre, Heriot Watt University.
    70. Jo Thori Lind & Daniel Chen, 2016. "The Political Economy Of Beliefs: Why Fiscal And Social Conservatives/Liberals Come Hand-In-Hand," 2016 Meeting Papers 606, Society for Economic Dynamics.
    71. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Estimation of treatment effects with high-dimensional controls," CeMMAP working papers CWP42/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    72. Cho, Hyunkeun, 2016. "The analysis of multivariate longitudinal data using multivariate marginal models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 481-491.
    73. Chen, D.L. & Levonyan, V. & Reinhart, S.E. & Taksler, G., 2014. "Do Payment Disclosure Laws Affect Industry-Physician Relationships?," Health, Econometrics and Data Group (HEDG) Working Papers 14/24, HEDG, c/o Department of Economics, University of York.
    74. Xu, Ning & Hong, Jian & Fisher, Timothy, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," MPRA Paper 71670, University Library of Munich, Germany.
    75. Ismir Mulalic & Ninette Pilegaard & Jan Rouwendal, 2015. "Does improving Public Transport decrease Car Ownership? Evidence from the Copenhagen Metropolitan Area," Tinbergen Institute Discussion Papers 15-139/VIII, Tinbergen Institute.
    76. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2010. "LASSO Methods for Gaussian Instrumental Variables Models," Papers 1012.1297, arXiv.org, revised Feb 2011.
    77. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Demand Estimation with Machine Learning and Model Combination," NBER Working Papers 20955, National Bureau of Economic Research, Inc.
    78. Chirinko, Robert S. & Wilson, Daniel J., 2017. "Tax competition among U.S. states: Racing to the bottom or riding on a seesaw?," Journal of Public Economics, Elsevier, pages 147-163.
    79. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    80. Daniel L. Chen, 2015. "Can markets stimulate rights? On the alienability of legal claims," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 23-65, March.
    81. Chen, Daniel L. & Halberstam, Yosh & Yu, Alan, 2016. "Covering: Mutable Characteristics and Perceptions of (Masculine) Voice in the U.S. Supreme Court," IAST Working Papers 16-38, Institute for Advanced Study in Toulouse (IAST), revised Aug 2016.
    82. Embaye, Weldensie T. & Zereyesus, Yacob A., 2017. "Measuring the value of housing services in household surveys: an application of machine learning approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252851, Southern Agricultural Economics Association.
    83. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    84. Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
    85. Chen, Daniel L. & Yeh, Susan, 2016. "Government Expropriation Increases Economic Growth and Racial Inequality: Evidence from Eminent Domain," IAST Working Papers 16-46, Institute for Advanced Study in Toulouse (IAST).
    86. Chen, Daniel L. & Halberstam, Yosh & Yu, Alan, 2016. "Covering: Mutable Characteristics and Perceptions of Voice in the U.S. Supreme Court," TSE Working Papers 16-680, Toulouse School of Economics (TSE), revised Aug 2016.
    87. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    88. Chen, Daniel L. & Yeh, Susan, 2016. "How Do Rights Revolutions Occur? Free Speech and the First Amendment," TSE Working Papers 16-705, Toulouse School of Economics (TSE).
    89. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.

Articles

  1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    See citations under working paper version above.Sorry, no citations of articles recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2010-11-13

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Davy Chen should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.