IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Forecasting High-Frequency Financial Data Volatility Via Nonparametric Algorithms: Evidence From Taiwan'S Financial Markets

Listed author(s):


    (Department of Finance and Banking, Aletheia University, 32, Chen Li Street, Tamsui, Taipei County, 251, Taiwan, ROC)

Registered author(s):

    This paper uses two computational intelligence algorithms, namely, artificial neural networks (ANN) and genetic programming (GP), for forecasting the volatility of high-frequency TAIEX financial data with four different horizons and compares the out-sample forecasting performance with the GARCH(1,1), EGRACH(1,1) and GJR-GARCH(1,1) models. Based on intraday integrated volatility, the mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Theil's U and the VaR backtest are used as performance indexes. Our empirical results reveal that the GP and ANN perform reasonably well in forecasting out-sample volatility compared to other parametric volatility forecasting models for most of the performance indexes. Our results also suggest that nonparametric computational intelligence algorithms are powerful for modeling the volatility of high-frequency intraday financial data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal New Mathematics and Natural Computation.

    Volume (Year): 02 (2006)
    Issue (Month): 03 ()
    Pages: 345-359

    in new window

    Handle: RePEc:wsi:nmncxx:v:02:y:2006:i:03:p:345-359
    Contact details of provider: Web page:

    Order Information: Email:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:02:y:2006:i:03:p:345-359. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.