IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The Minimal Κ-Entropy Martingale Measure

Listed author(s):


    (Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca Degli Abruzzi 24 – 10129 Torino, Italy)

Registered author(s):

    We introduce the notion of κ-entropy (κ ∈ ℝ, |κ| ≤ 1), starting from Kaniadakis' (2001, 2002, 2005) one-parameter deformation of the ordinary exponential function. The κ-entropy is in duality with a new class of utility functions which are close to the exponential utility functions, for small values of wealth, and to the power law utility functions, for large values of wealth. We give conditions on the existence and on the equivalence to the basic measure of the minimal κ-entropy martingale measure. Moreover, we provide characterizations of its density as a κ-exponential function. We show that the minimal κ-entropy martingale measure is closely related to both the standard entropy martingale measure and the well known q-optimal martingale measures. We finally establish the convergence of the minimal κ-entropy martingale measure to the minimal entropy martingale measure as κ tends to 0.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Journal of Theoretical and Applied Finance.

    Volume (Year): 15 (2012)
    Issue (Month): 05 ()
    Pages: 1-22

    in new window

    Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:05:p:1250038-1-1250038-22
    Contact details of provider: Web page:

    Order Information: Email:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:05:p:1250038-1-1250038-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.