IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Kernel Convergence Estimates For Diffusions With Continuous Coefficients

Listed author(s):


    (Global Valuation Limited, 9 Devonshire Square, London, EC2M 4YF, UK)

Registered author(s):

    Bidirectional valuation models are based on numerical methods to obtain kernels of parabolic equations. Here we address the problem of robustness of kernel calculations vis a vis floating point errors from a theoretical standpoint. We are interested in kernels of one-dimensional diffusion equations with continuous coefficients as evaluated by means of explicit discretization schemes of uniform step h > 0 in the limit as h → 0. We consider both semidiscrete triangulations with continuous time and explicit Euler schemes with time step so small that the Courant condition is satisfied. We find uniform bounds for the convergence rate as a function of the degree of smoothness. We conjecture these bounds are indeed sharp. The bounds also apply to the time derivatives of the kernel and its first two space derivatives. The proof is constructive and is based on a new technique of path conditioning for Markov chains and a renormalization group argument. We make the simplifying assumption of time-independence and use longitudinal Fourier transforms in the time direction. Convergence rates depend on the degree of smoothness and Hölder differentiability of the coefficients. We find that the fastest convergence rate is of order O(h2) and is achieved if the coefficients have a bounded second derivative. Otherwise, explicit schemes still converge for any degree of Hölder differentiability except that the convergence rate is slower. Hölder continuity itself is not strictly necessary and can be relaxed by an hypothesis of uniform continuity.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Journal of Theoretical and Applied Finance.

    Volume (Year): 14 (2011)
    Issue (Month): 07 ()
    Pages: 979-1004

    in new window

    Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:07:p:979-1004
    Contact details of provider: Web page:

    Order Information: Email:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:14:y:2011:i:07:p:979-1004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.