IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Pricing Asian Options In Affine Garch Models

Listed author(s):


    (Dipartimento di Metodi Quantitativi, per le Scienze Economiche ed Aziendali, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milano, Italy)

We derive recursive relationships for the m.g.f. of the geometric average of the underlying within some affine Garch models [Heston and Nandi (2000), Christoffersen et al. (2006), Bellini and Mercuri (2007), Mercuri (2008)] and use them for the semi-analytical valuation of geometric Asian options. Similar relationships are obtained for low order moments of the arithmetic average, that are used for an approximated valuation of arithmetic Asian options based on truncated Edgeworth expansions, following the approach of Turnbull and Wakeman (1991). In both cases the accuracy of the semi-analytical procedure is assessed by means of a comparison with Monte Carlo prices. The results are quite good in the geometric case, while in the arithmetic case the proposed methodology seems to work well only in the Heston and Nandi case.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Journal of Theoretical and Applied Finance.

Volume (Year): 14 (2011)
Issue (Month): 02 ()
Pages: 313-333

in new window

Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:02:p:313-333
Contact details of provider: Web page:

Order Information: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:14:y:2011:i:02:p:313-333. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.