IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Efficient, Almost Exact Simulation Of The Heston Stochastic Volatility Model

Listed author(s):


    (Department of Finance, VU University Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands; Delta Lloyd Life, Expertise Centrum, Spaklerweg 4, PO Box 1000, 1000BA Amsterdam, The Netherlands)



    (Department of Finance and Department of Actuarial Sciences, Maastricht University, The Netherlands)

We deal with discretization schemes for the simulation of the Heston stochastic volatility model. These simulation methods yield a popular and flexible pricing alternative for pricing and managing a book of exotic derivatives which cannot be valued using closed-form expressions. For the Heston dynamics an exact simulation method was developed by Broadie and Kaya (2006), however we argue why its practical use is limited. Instead we focus on efficient approximations of the exact scheme, aimed to resolve the disadvantages of this method; one of the main bottlenecks in the exact scheme is the simulation of the Non-central Chi-squared distributed variance process, for which we suggest an efficient caching technique. At first sight the creation of a cache containing the inverses of this distribution might seem straightforward, however as the parameter space of the inverse Non-central Chi-squared distribution is three-dimensional, the design of such a direct cache is rather complicated, as pointed out by Broadie and Andersen. Nonetheless, for the case of the Heston model we are able to tackle this dimensionality problem and show that the three-dimensional inverse of the non-central chi-squared distribution can effectively be reduced to a one dimensional cache. The performed analysis hence leads to the development of three new efficient simulation methods (the NCI, NCI-QE and BK-DI scheme). Finally, we conclude with a comprehensive numerical study of these new schemes and the exact scheme of Broadie and Kaya, the almost exact scheme of Smith, the Kahl-Jäckel scheme, the FT scheme of Lord et al. and the QE-M scheme of Andersen. From these results, we find that the QE-M scheme is the most efficient, followed closely by the NCI-M, NCI-QE-M and BK-DI-M schemes, whilst we observe that all other considered schemes perform a factor 6 to 70 times less efficient than the latter four methods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Journal of Theoretical and Applied Finance.

Volume (Year): 13 (2010)
Issue (Month): 01 ()
Pages: 1-43

in new window

Handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:p:1-43
Contact details of provider: Web page:

Order Information: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:p:1-43. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.