IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Solvability Of Linear-Quadratic Differential Games Associated With Pursuit-Evasion Problems

  • JOSEF SHINAR

    ()

    (Faculty of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel)

  • VLADIMIR TURETSKY

    ()

    (Faculty of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel)

  • VALERY Y. GLIZER

    ()

    (Department of Mathematics, Ort Braude College, P.O. Box 78, Karmiel 21982, Israel)

  • EDUARD IANOVSKY

    ()

    (Faculty of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel)

Registered author(s):

    A finite horizon zero-sum linear-quadratic differential game with a generalized cost functional, involving a Lebesgue integral with a measure that has both discrete and distributed parts, is considered. Sufficient conditions for the solvability of such a game are established in terms of the eigenvalues of an integral operator in Hilbert space. The game solution is based on solving an impulsive Riccati matrix differential equation. These results are applied for two games associated with pursuit-evasion problems. Illustrative examples are presented.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=pdf&id=pii:S0219198908002060
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=html&id=pii:S0219198908002060
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Game Theory Review.

    Volume (Year): 10 (2008)
    Issue (Month): 04 ()
    Pages: 481-515

    as
    in new window

    Handle: RePEc:wsi:igtrxx:v:10:y:2008:i:04:p:481-515
    Contact details of provider: Web page: http://www.worldscinet.com/igtr/igtr.shtml

    Order Information: Email:


    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:10:y:2008:i:04:p:481-515. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.