IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games

  • GUILHERME CARMONA

    ()

    (Faculdade de Economia, Universidade Nova de Lisboa, Campus de Campolide, 1099-032 Lisboa, Portugal)

We show that every bounded, continuous at infinity game of perfect information has an ε–perfect equilibrium. Our method consists of approximating the payoff function of each player by a sequence of simple functions, and to consider the corresponding sequence of games, each differing from the original game only on the payoff function. In addition, this approach yields a new characterization of perfect equilibria: A strategy f is a perfect equilibrium in such a game G if and only if it is an 1/n–perfect equilibrium in Gn for all n, where {Gn} stands for our approximation sequence.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=pdf&id=pii:S0219198905000661
Download Restriction: Access to full text is restricted to subscribers.

File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=html&id=pii:S0219198905000661
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Game Theory Review.

Volume (Year): 07 (2005)
Issue (Month): 04 ()
Pages: 491-499

as
in new window

Handle: RePEc:wsi:igtrxx:v:07:y:2005:i:04:p:491-499
Contact details of provider: Web page: http://www.worldscinet.com/igtr/igtr.shtml

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fudenberg, Drew & Levine, David, 1983. "Subgame-perfect equilibria of finite- and infinite-horizon games," Journal of Economic Theory, Elsevier, vol. 31(2), pages 251-268, December.
  2. Harris, Christopher & Vickers, John, 1985. "Perfect Equilibrium in a Model of a Race," Review of Economic Studies, Wiley Blackwell, vol. 52(2), pages 193-209, April.
  3. Hellwig, Martin & Leininger, Wolfgang & Reny, Philip J. & Robson, Arthur J., 1990. "Subgame perfect equilibrium in continuous games of perfect information: An elementary approach to existence and approximation by discrete games," Journal of Economic Theory, Elsevier, vol. 52(2), pages 406-422, December.
  4. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
  5. Fudenberg, Drew & Levine, David, 1986. "Limit Games and Limit Equilibria," Scholarly Articles 3350443, Harvard University Department of Economics.
  6. Borgers, Tilman, 1991. "Upper hemicontinuity of the correspondence of subgame-perfect equilibrium outcomes," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 89-106.
  7. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
  8. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-28, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:07:y:2005:i:04:p:491-499. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.