IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Characterization And Approximation Of Value Functions Of Differential Games With Maximum Cost In Infinite Horizon

Listed author(s):


    (Dpto. de Matematica, Universidad de Rosario, Argentina)



    (UMR Analyse des Systèmes et Biométrie, INRA Montpellier, France)

Registered author(s):

    Value functions of differential games with L∞ criterion over infinite horizon are known to possess poor regularity. As an alternative to generalized solutions of the Isaacs equation, that usually requires some regularity properties, we propose a characterization of the value functions using the integral form of the Isaacs equation. We prove, without any regularity assumption, that value functions are the lowest super-solution and the largest element of a special set of sub-solutions, of the dynamic programming equation. We characterize also the limits of finite horizon value functions, and propose an approximation scheme in terms of iterations of an infinitesimal operator defined over the set of Lipschitz continuous functions. The images of this operator can be characterized by generalized solutions of a classical Isaacs equation.We illustrate these results on a example, whose value functions can be determined analytically.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Game Theory Review.

    Volume (Year): 07 (2005)
    Issue (Month): 04 ()
    Pages: 369-393

    in new window

    Handle: RePEc:wsi:igtrxx:v:07:y:2005:i:04:p:369-393
    Contact details of provider: Web page:

    Order Information: Email:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:07:y:2005:i:04:p:369-393. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.